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Supplementary Methods 

Study Design and Population 

We conducted an individual participant data (IPD) meta-analysis pooling raw, participant-level data from 

four European hospital cohorts1.  IPD enabled harmonization of variables, uniform quality control (QC), and 

re-analysis using consistent definitions across studies1.  The pooled dataset contained 496 participants. Body 

weight was missing in two cohorts2,3 and was imputed using a regression derived in 230 adults aged 50–69 

years: 

weight (kg) = 0.59 × height (cm) + 7.97 × sex (1 = male; 0 = female) − 33.57; R² = 0.51; SEE = 8.62 kg. 

In Moinard & Guénard (1990)2, raw data were embedded in the article; 10 COPD cases lacked explicit 

emphysema status. Based on clinical presentation (mean FEV₁/FVC = 0.56; arterial PO₂ = 58 mmHg; DLCO 

z-score= −3.04), these were classified as emphysema for the present analyses. After QC filtering (see below), 

three cohorts remained2-4, comprising 408 participants: 85 with CT-confirmed emphysema and 323 smokers 

without emphysema. Most were current or former smokers (86%; IQR 14–43 pack-years). The fourth cohort 

used a 5-s NO–CO breath-hold time (BHT)5.   Although acceptable under the DLNO ERS technical standards6, 

it was excluded to avoid protocol heterogeneity. Attempts to obtain additional NO–CO double-diffusion 

datasets were unsuccessful; one prominent group declined participation despite repeated outreach7.   The final 

harmonized dataset is available in a cloud repository8. 

Construction of Data Quality Table 

For each cohort, G.S.Z. abstracted whether the following pre-specified items were available and analysable: 

(1) presence of both COPD (Disease = 1) and non-COPD (Disease = 0) groups; (2) pack-years; (3) percent 

emphysema by CT volume; (4) smoking history; (5) mMRC dyspnoea score; (6) sex; (7) height; and (8) 

weight. Technical quality (Item 9) was assessed record-by-record using harmonized criteria for the 

simultaneous 10 ± 2 s NO–CO protocol. A record failed quality control if any of the following were present: 

BHT outside 8.0–12.0 s; VA/TLC > 1.00; RV/TLC < 0.20; inspired volume/FVC (IV/FVC) < 0.85; or other 
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documented protocol deviations. Study-level quality control was the proportion of records passing all checks; 

studies with >95% pass rate was marked ✓, otherwise ✗ with the pass percentage. The 5-s BHT cohort5  was 

not included in QC tallies to maintain protocol homogeneity (90% of its records met the other QC criteria). In 

Table S1, ✓ denotes availability/analytic readiness; ✗ denotes absence/unusable data. The “Total number of 

checkmarks” is the count of ✓ across the nine items. See Table S1.  

Variable Standardization and Analytic Quality Control  

Spirometry, lung volumes, and diffusing capacity indices were standardized to z-scores (GLI for spirometry9, 

lung volumes10, DLCO10s
11,12, VA10s

11,12, and KCO10s
11,12). Device-appropriate DLNO reference equations13 

and 10-s breath-hold DLNO/KNO equations14 were applied to ensure cross-study comparability. When DLNO 

and DLCO were measured simultaneously, DLCO z-scores were derived from the same sources as the DLNO 

reference equations13,14.   

Analytic QC applied the following exclusions prior to modelling: cases that had breath-hold outside 

8–12 s; VA/TLC ≥ 1.0; FEV₁/FVC ≥ 1.0; RV/TLC < 0.20; and inspired volume/FVC < 0.85. Analyses were 

restricted to complete cases after QC. Age and sex distributions of the final dataset are shown in Figure S1. 

LASSO 

The Least Absolute Shrinkage and Selection Operator (LASSO) is a powerful regularization technique used 

in regression analysis to simultaneously perform variable selection and shrinkage, enhancing model 

interpretability and prediction accuracy, particularly in datasets with many predictors or multicollinearity15,16. 

LASSO modifies the standard linear or logistic regression objective by adding an L1 penalty, the sum of the 

absolute values of the coefficients, to the loss function. This penalty, controlled by a tuning parameter λ, 

shrinks the coefficients of less predictive variables toward zero, effectively excluding them from the model, 

while retaining and estimating the coefficients of the most relevant predictors15,16. For binary outcomes like 

emphysema (yes emphysema or no emphysema), LASSO is applied within logistic regression, minimizing 
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the negative log-likelihood plus the λ times the sum of absolute coefficients, encouraging sparsity by setting 

some coefficients to zero. This sparsity is particularly useful for fitting the z-scores — TLC, RV/TLC, FEV1, 

FVC, FEV1/FVC, DLCO10s, DLNO10s, VA10s, KCO10s, and KNO10s — as predictors, allowing LASSO to 

identify a subset of these lung function metrics most strongly associated with emphysema. 

LASSO was implemented to identify the most important predictor variables for emphysema, 

leveraging a dataset comprising 408 subjects with complete cases (after filtering).  The process began with 

preparing the data, ensuring the predictors (z-scores standardized relative to reference equations like GLI or 

GAMLSS) were numeric, and the outcome (emphysema) was binary. A LASSO logistic regression model 

was fit, transforming the predictors into a matrix and the outcome into a vector, then applying cross-validation 

(e.g., 10-fold) to determine the optimal λ that minimizes prediction errors, such as log-loss or misclassification 

errors. This optimal λ was used to fit the final LASSO model, which shrank some coefficients to zero, thereby 

selecting the most relevant z-scores—potentially those variables most physiologically linked to airflow 

limitation, gas transfer, and hyperinflation in emphysema—while excluding less informative variables.  With 

non-zero coefficients, the resulting model provides a sparse, interpretable set of predictors, improving standard 

logistic regression by addressing multicollinearity among lung function metrics and reducing overfitting. The 

selected predictors, their coefficients, and model performance metrics (e.g., area under the ROC curve, 

accuracy) would then be used in binary logistic regression analyses and compared to other methods like 

principal component analysis (PCA) or hierarchical partitioning to validate findings and highlight LASSO’s 

role in simplifying the model for emphysema prediction.  

Binary Logistic Regression 

Once LASSO determined possible predictors of emphysema, binary logistic regression was used to determine 

the best model.  Both generalized linear models (GLM) and generalized linear mixed-effects models (GLMM) 

with a random intercept for "Study" were employed to account for potential clustering effects.  Models were 

evaluated based on BIC (frequentist)11,17 method –  and the LOOIC (Bayesian)18,19, which implemented 



7 
 

 

Markov Chain Monte Carlo (MCMC) sampling to generate posterior distributions for model parameters20,21.  

Weakly informative priors were used: a normal distribution with mean zero and standard deviation one for all 

regression coefficients, a Student t-distribution with three degrees of freedom (location zero, scale 2.5) for the 

intercept, and an exponential distribution with rate one for the standard deviation of the study-level random 

effect. Models were fit with four MCMCs, each with 15,000 thousand iterations, including 5,000 warm-up 

iterations; the target acceptance probability was set to approximately 0.99999 and the maximum tree depth 

was fifteen. Predictive performance was compared using Pareto-smoothed importance-sampling leave-one-

out cross-validation with moment matching, and relative support with model weights summarized based on 

stacking and pseudo-Bayesian model averaging.  

We also fit a focused three-predictor model—forced expiratory volume in one second (standardized 

score), total lung capacity (standardized score), and diffusing capacity for nitric oxide from the generalized 

additive models for location, scale, and shape framework (standardized score)—with and without a study 

random intercept, and compared models by the difference in expected log predictive density, choosing the 

simpler model when its performance was within about one standard error of the best model. In addition, we 

examined projection-predictive variable selection with forward selection (falling back to a generalized linear 

model if the generalized linear mixed-model procedure failed), computed variance inflation factors and 

standard generalized-linear-model fit metrics (including the Akaike information criterion and the Bayesian 

information criterion). The Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) are 

not directly applicable to the LOOIC18.  The frequentist (BIC) and Bayesian (LOOIC) analytical methods 

assessed model superiority, with detailed explanations provided in Tables S4-S5.   

Principal Component Analysis and Hierarchical Partitioning Analysis 

To explore the underlying structure of lung function predictors and their association with emphysema, we 

performed Principal Component Analysis (PCA) on standardized z-scores of the best predictors and compared 

it with the additional of fitted DLCO z-scores obtained from GLI equations 11,12. PCA was conducted to reduce 
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the dimensionality of these correlated predictors into principal components (PCs) that explain the maximum 

variance, with no additional scaling required due to their z-score standardization. The resulting PCs were then 

used as predictors in a binary logistic regression model to assess their predictive power for emphysema (coded 

as 0/1 in the Disease variable), with model fit evaluated using pseudo-R² metrics (McFadden’s R2) and 

information criteria (AIC, BIC). To quantify the relative contribution of each predictor to the variance 

explained in emphysema, we applied hierarchical partitioning. This involved fitting a logistic regression model 

with all predictors, partitioning the marginal R² into unique and shared contributions, reporting percentages 

of the total explanatory power for each predictor, adjusted for their collinearity. Both analyses were performed 

on a dataset of 408 subjects, with missing data handled by listwise deletion to ensure complete cases. A 

comparison of PCA vs hierarchical partitioning is provided in Table S6. Results of PC analyses are provided 

in Tables S11-S14 and Figure S4, with Hierarchical partitioning results in Tables S15-S16.  

AUROC, MCC and Kappa Statistics 

Classification performance was measured using the area under the receiver operating characteristic curve 

(ROC) and Matthews Correlation Coefficient (MCC). The 95% CI for the ROC models was calculated using 

DeLong’s method for imbalanced datasets 22,23. The false discovery rate was controlled among AUROCs at 

0.01 using the Benjamini-Hochberg procedure 24.  

While AUROC assesses discriminatory ability, MCC provides a balanced evaluation in datasets with 

class imbalances 25-27, making it a preferred metric for binary classifications. The 95% Confidence Interval 

(CI) for the MCC were generated from 100,000 bootstrapped samples. In addition, other metrics were used to 

classify those that had progressed to emphysema compared to those that did not.  The name, definitions, and 

formulas for other classification metrics used, are present in Tables S7-S9. 

Kappa statistical analysis was conducted to evaluate the level of agreement between three prespecified 

logistic models: 
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• Model A (3 predictors): FEV₁ z-scores [GLI] + TLC z-scores [GLI] + DLCO10s z-scores [GLI] 

• Model B (4 predictors): Model A + DLNO10s z-scores [GAMLSS] 

• Model C (3 predictors): FEV₁ z-scores [GLI] + TLC z-scores [GLI] + DLNO10s z-scores [GAMLSS] 

The discordance between equations was calculated as 1−κ where κ reflects the concordance28. Discordance 

categories were defined as follows: (1−κ) < 0.1 = Negligible discordance; 0.1 ≤ (1−κ) ≤ 0.20 = Very low 

discordance; 0.21 ≤ (1−κ) ≤ 0.40 = Low discordance; 0.41 ≤ (1−κ) < 0.60 = Moderate discordance; 0.61≤ 

(1−κ) < 0.79 = High discordance; (1−κ) ≥ 0.8 = Very high discordance. The Kappa analysis quantified 

differences in LLN classifications derived from Zavorsky & Cao (2022)13 compared to van der Lee et al. 

(2007) 14 and GLI equations. These comparisons provided insights into the variability of LLN thresholds and 

potential impacts on clinical classifications. 

Net Reclassification Index (NRI) & Integrated Discrimination Index (IDI) 

We compared three prespecified logistic models: 

• Model A (3 predictors): FEV₁ z-scores [GLI] + TLC z-scores [GLI] + DLCO10s z-scores [GLI] 

• Model B (4 predictors): Model A + DLNO10s z-scores [GAMLSS] 

• Model C (3 predictors): FEV₁ z-scores [GLI] + TLC z-scores [GLI] + DLNO10s z-scores [GAMLSS] 

Because patients derived from multiple studies, we evaluated a study-level random intercept (1∣Study) via a 

prespecified decision rule. For each model we fit (i) a simple logistic regression and (ii) a Generalized Linear 

Mixed-Model (GLMM) with a Study random intercept. We retained the GLMM only if (a) the random-effect 

variance was >0 (non-singular fit) and (b) AIC improved by >2 versus the Generalized Linear Model (GLM). 

Otherwise, we used the GLM. (In our data, all three final models were GLMs). 

For each fitted model we converted predicted probabilities to yes/no decisions using the Youden’s J–

optimal threshold (threshold that maximizes sensitivity + specificity − 1). The threshold was re-optimized 
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within every bootstrap resample so that uncertainty in the operating point was propagated into all interval 

estimates. 

At the Youden-optimized operating point we computed accuracy, balanced accuracy, sensitivity, 

specificity, PPV, NPV, FPR, FNR, FDR, FOR, F1, Cohen’s κ, Matthews correlation coefficient (MCC), 

likelihood ratios (+LR/−LR), diagnostic odds ratio (DOR), and discordance. Model-to-model differences 

(B−A and C−A) were obtained with a paired bootstrap (see below); we labelled a difference “statistically 

different” only when the 95% bootstrap CI excluded 0. Tables S17-S18 presents the comparison results for 

Models A, B, and C. 

We quantified reclassification between models two ways: 

1. Threshold-based reclassification at the Youden-optimized cut-points (Table S19): 

o NRI = NRI+ + NRI−, where NRI+ = Pr(Up | Case) − Pr(Down | Case) and NRI− = Pr(Down | 

Control) − Pr(Up | Control). 

o We also report the four component proportions: Pr(Up | Case), Pr(Down | Case), Pr(Down | 

Control), Pr(Up | Control). 

o IDI (Integrated Discrimination Index) is the difference in mean predicted risk between cases 

and controls for the two models. 

2. Category-free reclassification: the same NRI components and IDI computed without any fixed risk 

categories (Table S20). 

All reclassification results are shown for B−A (adding DLNO to Model A) and C−A (replacing DLCO with 

DLNO) (Tables S19-S20).  

For each model we assessed calibration by logistic recalibration: 
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reporting the calibration intercept α and calibration slope β. Intercept ≈ 0 and slope ≈ 1 indicate good 

calibration. CIs were obtained by bootstrap.  Uncertainty was quantified with 50,000 bootstrap resamples. For 

GLMs we used subject-level resampling; had a GLMM been retained we would have used a cluster (Study) 

bootstrap. For model comparisons (B−A, C−A) we used a paired bootstrap that resampled the same subjects 

(or the same clusters) for both models within each draw. For each quantity we report the bootstrap standard 

error and the percentile 95% CI (2.5th–97.5th percentiles across resamples). 

Random-Intercept Screening and Model Ranking Methods 

Bayesian fits with weakly informative priors was used—Normal(0, 1) for fixed effects; Student-t(3, 0, 2.5) 

for the intercept; Exponential(1) for the standard deviation of random intercepts—run with four Markov chain 

Monte Carlo (MCMC) chains, up to 20,000 iterations, and Pareto-smoothed importance-sampling leave-one-

out cross-validation (PSIS-LOO) with moment matching. If any Pareto k diagnostic exceeded 0.7, we re-fit 

those cases using exact leave-one-out refits (reloo). We compared random-intercept and fixed-effects versions 

using the difference in expected log predictive density (ΔELPD) and its standard error (SE); the random-

intercept variant was chosen when ΔELPD > SE. If Bayesian fitting failed, we fit generalized linear models / 

generalized linear mixed models (GLM/GLMM) and selected the variant with the lower Bayesian Information 

Criterion (BIC). 

For each chosen variant we computed the area under the receiver operating characteristic curve, the 

Matthews correlation coefficient (MCC), and BIC; MCC was optimized over the classification threshold. For 

out-of-sample robustness, MCC was estimated using stratified 5-fold cross-validation (CV), selecting the 

threshold on training folds and evaluating on held-out folds. 

All 34 models were ranked using PSIS-LOOIC and BIC (lower values indicate better fit/parsimony) 

and AUROC and MCC (higher values indicate better discrimination). “Equal-weight” rankings averaged 
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ranks across the available metrics (weights renormalized if any metric was missing; PSIS-LOOIC was 

excluded if unavailable). “Weighted” rankings followed six prespecified schemes: 

• Weighted Average (LOOIC 0.40, AUROC 0.30, MCC 0.20, BIC 0.10). Prioritizes generalization 

(most significant weight on LOOIC) while still valuing discrimination (AUROC, MCC) and 

parsimony (BIC). BIC is modest to avoid double-penalizing complexity, given that LOOIC already 

favours simpler, better-generalizing models.  

• Generalization-Emphasis (LOOIC 0.55, AUROC 0.20, MCC 0.15, BIC 0.10). For use when 

out-of-sample performance is paramount (e.g., multi-site deployment, transportability). 

• Discrimination-Emphasis (AUROC 0.45, MCC 0.35, LOOIC 0.10, BIC 0.10). For clinical contexts 

where case–control separation matters most (screening/triage). AUROC captures threshold-free 

separation; MCC reflects performance at an operating point. LOOIC/BIC remain as safeguards. 

• BIC-Omitted (BIC = 0; remaining weights renormalized). Sensitivity analysis to confirm parsimony 

penalties are not driving results, recognizing that LOOIC already disfavours gratuitous complexity. 

• AUROC-Emphasis (AUROC 0.35, LOOIC 0.30, MCC 0.25, BIC 0.10. Mirrors the common 

AUC-first evaluation to show that conclusions are robust even when discrimination is given extra 

prominence. 

• Average Rank (all schemes). For presentation, we also report the unweighted mean of the six 

scheme-specific ranks for each model. This derived “Average Rank” was not resampled in 

inferential procedures. 

Ties were broken by favoring lower PSIS-LOOIC/BIC, then higher AUROC/MCC, then fewer 

predictors. An optional collinearity penalty was prespecified with a hard flag for VIF > 10); when applied, 

penalized ranks were obtained by adding this penalty to the equal/weighted rank. Ties favoured lower 

LOOIC/BIC, then higher AUROC/MCC, and then fewer predictors. An optional collinearity penalty was 

prespecified as max (0, max VIF − 5) × 0.25 (with an optional hard flag for VIF > 10); when applied,  penalized 

ranks were obtained by adding this penalty to the equal/weighted Rank.  
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Scheme Robustness of comparison of model ranks 
To assess whether model comparisons were robust to the weighting of evaluation metrics, we prespecified the 

six ranking schemes above and used the best-ranked z-score model [MODEL C: TLC & FEV₁ (GLI), DLNO 

(GAMLSS)] as the baseline. For each comparator and for each scheme we computed the rank difference 

 

So that positive values indicate the comparator ranks worse than MODEL C under that scheme. We then 

calculated, for each comparator, the mean Δ rank across the six schemes. 

To reflect sensitivity to weighting choice (not patient-level sampling variability), we obtained 95% 

bootstrap intervals by resampling the six schemes with replacement (n = 6, B = 10,000) and recomputing the 

across-scheme mean Δ rank for each bootstrap replicate. We did not resample or use the derived “Average 

Rank” column in this procedure; intervals were based on the six scheme-specific differences. Intervals 

entirely > 0 indicate the comparator is consistently ranked worse than MODEL C across the prespecified 

schemes. Results for the top 10 of 34 models are displayed in Figure 3 of the main article. 

Decision Curve Analysis 

To evaluate the clinical utility of the emphysema classification models, we conducted decision curve analysis 

(DCA) using out-of-fold predictions from repeated cross-validation. Net benefit was plotted against threshold 

probability values ranging from 0 to 0.25 (Figure S7). Each model's net benefit was compared against two 

reference strategies: Treat All (light grey line): assumes all patients are treated; Treat None (dashed black 

line): assumes no patient is treated.  The net benefit was computed using the standard DCA formula: 

 

Where TP = true positives, FP = false positives, pt = threshold probability, and n = total number of patients.  
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Laptop Specifications Used for Code Execution 
The central processing unit (CPU)  used is the Intel Core i9-12950HX, featuring 16 cores (8 performance and 

eight efficiency) and 24 threads, with a base clock of 2.3 GHz that boosts up to 5 GHz. The CPU is paired 

with 128 GB of RAM (running at 1795.6 MHz DRAM frequency). FEV1 

Package function mapping 

Part 1: Workflow Summary (General Readership) 
All analyses were conducted in R (version 4.4.2), using a combination of base functions and specialized 

packages. The process followed a structured pipeline: 

1. Data Handling & Preprocessing 
SPSS files were imported and converted into tidy R data frames. Variables were cleaned, reshaped, recoded, 

and standardized across studies. Factor levels were harmonized; labelled vectors were coerced to base types. 

Model outputs were tidied into consistent formats for analysis and reporting. Visualization tools were used to 

generate calibration plots, biplots, and publication-quality figures. Tables and figures were exported to Word 

and Excel formats. Parallelization was used to speed up bootstraps and cross-validations, with runtime and 

reproducibility tightly controlled. 

2. Modeling, Evaluation & Inference 

• LASSO regression was used to select lung function predictors most associated with emphysema. 

• Logistic regression models—both frequentist and Bayesian—were fit with and without study-level 

random effects. 

• Model selection was guided by AIC, BIC, and LOOIC, depending on the framework. 

• Classification performance was evaluated using AUROC, MCC, and metrics like sensitivity, 

specificity, and F1-score. 

• Bootstrapping and stratified cross-validation were applied to assess stability and uncertainty. 

• PCA and hierarchical partitioning were used to reduce dimensionality and understand variable 

importance. 
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• Collinearity was checked using variance inflation factors (VIFs), and calibration diagnostics were used 

to assess model fit. 

All R packages used are presented in Tables S2-S3.   
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Table S1. Data quality summary by study 

 Data Quality Item 
Dal Negro et 

al. (2024)5 
Diener et al. 

(2021)4 

Moinard & 
Guénard 
(1990)2 

van der 
Lee et al. 
(2009)3 

1. Both COPD (Disease = 1) and non-COPD 
subjects (Disease = 0) were provided in the 
study 

✓ ✓ ✓ ✓ 

2. Pack Years Included ✓ ✓ ✓ ✓ 

3. Percent emphysema by CT Volume ✓ ✗ ✗ ✓ 

4. Smoking history included ✗ ✓ ✗ ✗ 

5. mMRC dyspnoea scores included ✓ ✗ ✗ ✗ 

6. Sex of subject included ✓ ✓ ✓ ✓ 

7. Height of subjects included ✓ ✓ ✓ ✓ 

8. Weight of subjects included ✓ ✓ ✗ ✗ 

9. Met technical quality standards (i.e. > 95% of 
cases met quality control requirements) ✗ (2%) * ✗ (77.6%) ✓ (100%) ✓ (99.2%) 

Total number of checkmarks (out of 9 possible) 7 6 5 6 
Failing quality control means that one of the following was found in a case: Breath-hold time was not between 
8.0-12.0 s; VA/TLC ratio ≥ 1.0; FEV1/FVC ratio ≥ 1.0; RV/TLC ratio < 0.20; or inspired volume to FVC ratio 
< 0.85. Each case that failed quality control was eventually removed before statistical analyses.   

*The low percentage reflects the study’s 5-s breath-hold. We excluded that study to harmonize breath-hold 
time across studies; without that criterion, 90% of cases in that study met quality control requirements.  

Dal Negro et al. (2024)5 used the Hyp’Air Compact device (Medisoft®, Belgium) to measure DLNO and 
DLCO via electrochemical NO and CO sensors.  In contrast, Moinard & Guénard (1990)2 and van der Lee et 
al. (2009)3 employed chemiluminescence-based analyzers (Thermo Electron Corporation, MA, USA; and 
CLD 77AM, Eco Physics, Zurich, Switzerland, respectively) for DLNO assessment. Diener et al. (2021)4 
utilized the Jaeger MasterScreen PFT Pro (CareFusion, Hochberg, Germany), which also used an 
electrochemical NO and CO sensors for DLNO / DLCO measurements. 
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Table S2. Package–Function Mapping – Data Handling and preprocessing 

Functionality Package(s) Notes 

Data import (Excel) readxl Import .xlsx; used for all figures. 

Data import (SPSS) haven Import .sav files. 

Data wrangling dplyr, tidyr, vctrs, forcats, 
stringr 

Standardize, reshape, encode, and 
clean variables. 

Visualization (labels) ggrepel 
Overlap‑avoiding text/markers (e.g., 
asterisks near endpoints). 

Visualization (rich text) ggtext 
HTML/Markdown text in plots 
(legend/annotations). 

Visualization (core) ggplot2 Publication‑ready plots. 

Figure assembly/layout cowplot, grid 
Compose multi‑panel figures; layout 
control; grid::unit() for sizing. 

Graphics device / export ragg 
High‑resolution TIFF/PNG via 
agg_tiff(); improved anti‑aliasing. 

Model tidying broom 
Convert model objects into tidy data 
frames. 

Table export officer, flextable, openxlsx Generate Word and Excel tables. 

Reproducibility & 
tooling tictoc, conflicted, parallelly 

Runtime tracking, namespace 
resolution, parallel tools. 

Collinearity diagnostics car 
Variance inflation factor (VIF) 
calculations. 
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Table S3. Package–Function Mapping – Modelling, Evaluation, Inference 

Functionality Package(s) Notes 

LASSO regression glmnet Penalized variable selection. 

Bayesian modelling brms, rstan, cmdstanr Logistic models; Stan 
backend; robust PSIS‑LOO. 

Frequentist modelling stats::glm, lme4::glmer 
GLMs and mixed‑effects 
(study random intercept when 
used). 

Model tidying (GLMs/GLMMs) broom, broom.mixed Tidy summaries for reporting. 

Information criteria loo 
PSIS‑LOOIC (−2×elpd), 
Pareto‑k diagnostics, model 
comparison. 

Discrimination & ROC pROC AUROC, DeLong CIs, 
Youden‑J threshold. 

Cross‑validation custom K‑fold; future, future.apply 
Stratified K‑fold CV; 
thresholds learned in training; 
parallel execution. 

Bootstrapping & resampling base R (sample, quantile); optional: future 
Paired/bootstrap resampling 
incl. mean Δrank across 
schemes (B=10,000). 

PCA stats::prcomp Dimensionality reduction; 
variance explained. 

Hierarchical partitioning MuMIn, glmm.hp Partition McFadden’s R² into 
unique/joint contributions. 

Mixed‑effects & GLMs lme4, stats Fit fixed/random‑effects 
logistic models. 

Model comparison & pseudo‑R² pscl McFadden’s R² and related 
indices. 

Rank tests & post‑hoc stats::friedman.test, PMCMRplus Friedman test; Conover 
post‑hoc comparisons. 

Multiple testing stats::p.adjust(method = 'BH') Benjamini–Hochberg FDR 
control. 

Decision‑curve analysis ggplot2, dplyr (or mda / dcurves) 
Net benefit vs threshold using 
OOF predictions; 95% 
bootstrap CIs. 
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Table S4. Estimating model superiority based on BIC differences: interpreting the 
probability that the lower-BIC model is better 

 
Bayes Factor (Posterior Odds): The posterior odds are calculated using the BIC differences. It quantifies how much more likely one model is better 
compared to another. The Bayes factor can be estimated from the BIC difference by the formula: Bayes Factor = e∆BIC ÷ 2.  Here, the ΔBIC is the difference 
in BIC scores between the two models. This exponentiation reflects how changes in BIC scores can exponentially affect the likelihood ratio between the 
two models. The probability that the model with lower BIC is better can be derived from the Bayes Factor. If the Bayes factor is B, the probability P that 
the model with the lower BIC is better – after considering the observed data – can be estimated as: P = β ÷ (1+β). This formula assumes equal prior 
probabilities for the two models. Evidence Strength (e.g., weak, positive, strong, solid) is based on thresholds of the Bayes factor or the BIC differences. 
Commonly, larger Bayes factors indicate stronger evidence for one model over another. Specific thresholds for these categories can vary, but, this table is 
based on the suggestions by Raftery (1995)29 but without rounding. The table stops at a ΔBIC of 10.1 as the evidence remains “Solid” at any point larger 
than 9.2. The differences between models using the Leave-One-Out Information Criterion (LOOIC) are interpreted the same way. 
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Table S5. Comparison of Bayesian Information Criterion (BIC) and Leave-One-
Out Information Criterion (LOOIC) 

Criterion BIC LOOIC 
Definition The BIC examines model 

performance. The BIC is a criterion 
for model selection that balances 
goodness-of-fit and model 
complexity. 

The LOOIC is used to evaluate predictive 
accuracy with a focus on model 
generalizability. The LOOIC is a cross-
validation-based metric that assesses model 
predictive accuracy. 

Focus Balancing model fit and complexity 
(parsimony). 

Model generalizability and predictive 
accuracy. 

Interpretation Lower BIC values indicate a better 
trade-off between model fit and 
complexity. 

Lower LOOIC values suggest better 
predictive accuracy on unseen data. 

Complexity 
Penalty 

Penalizes models more heavily for 
added parameters to avoid 
overfitting. 

Penalizes overfitting implicitly by estimating 
prediction errors via cross-validation. 

Underlying 
Assumption 

Assumes the data are from a 
parametric model (often normal 
distribution). 

Relies on fewer distributional assumptions 
and uses resampling. 

Use Case Suitable for comparing nested 
models or simpler parametric 
models. 

Ideal for complex models, including 
hierarchical or non-nested models. 

Data 
Requirements 

Requires a well-defined likelihood 
function. 

Can work with a broader range of model 
types, including Bayesian models. 

Computational 
Cost 

Relatively low, as it requires only the 
model likelihood and parameter 
count. 

Computationally intensive due to resampling 
or approximation techniques. 

Strengths Simple, fast, and effective for 
straightforward parametric models. 

Robust and adaptable, particularly for 
evaluating predictive performance. 

Limitations May perform poorly with complex or 
hierarchical models. 

Computationally expensive and sensitive to 
the choice of approximation methods. 

Table created from the works of Vehtari et al. (2017) 18, Schwarz et al. (1978)30 & Burnham et al. (2004) 31 
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Table S6. Comparison principal component analysis and hierarchical partitioning  
Aspect Principal Component Analysis Hierarchical Partitioning 
Definition A dimensionality‑reduction technique that 

transforms correlated variables into 
uncorrelated principal components. 

A method to quantify each predictor’s 
relative importance by partitioning 
model R² into unique and shared 
contributions (via R² partitioning). 

Focus Variance structure within predictors (e.g., 
z‑scores for TLC, FEV₁, DLNO10s; 

GAMLSS), reducing dimensionality for 
modelling. 

Variance in the outcome (emphysema = 
disease) explained by each predictor, 
accounting for collinearity and shared 
effects. 

Interpretation PC1, PC2, PC3, and PC4 are orthogonal 
linear combinations of the z‑score 
predictors. In our data, PC1 loaded 
strongly on DLNO10s and explained ~52% 
of predictor variance; PC2 represents 
hyperinflation (~17%), and PC3 
represents airway obstruction (~12%), and 
PC4 was non-significant). 

McFadden’s R² = 0.663. Individual, 
standalone contributions (% of total) 
was ~78% for FEV₁ z-scores, ~48% for 
DLNO10s (GAMLSS) z‑scores, and  
~13% for TLC z‑scores.  

Complexity Penalty None directly; adding PCs to regression 
increases model complexity (e.g., 
BIC/AIC trade‑offs). 

Adjusts via R² partitioning. High 
collinearity can complicate 
interpretation; in our data VIFs were 
modest (~1.09 to 1.62) for the three-
predictor model of z‑scores for TLC, 
FEV₁, DLNO10s). However, VIFs 
ranged from 1.12 to 4.44 in the four-
predictor model of z‑scores for TLC, 
FEV₁, DLNO10s, and DLCO10s. 

Underlying Assumption Linear relationships among predictors; 
variance is informative. Outcome is not 
used to derive PCs. 

Predictors contribute to the outcome in 
a linear fashion; a fitted model (e.g., 
logistic regression) is valid for R² 
partitioning. 

Use Case Simplify multicollinear predictors 
(z‑scores; typical VIFs ~1.4) for 
regression; identify key variance patterns. 

Assess predictor importance for disease, 
especially with collinear predictors; 
prioritize z‑scores of TLC, FEV₁, and 
DLNO for contributions. 

Data Requirements Numeric continuous predictors (z‑scores); 
no missing values after listwise deletion (n 
= 408). 

Numeric predictors and a binary 
outcome (disease: yes/no); complete 
cases; fitted logistic regression. 

Computational Cost Low to moderate; matrix decomposition 
scales with number of predictors. 

Moderate; depends on model fitting and 
number of R² partitions; scales with 
predictors and sample size (n = 408). 

Strengths Reduces dimensionality; handles 
collinearity; identifies major variance 
patterns. 

Quantifies unique and shared variance; 
adjusts for collinearity; provides clear 
predictor importance (e.g., strong effect 
for FEV₁). 

Limitations Less interpretable than original predictors; 
assumes linear relations; does not model 
the outcome directly. 

Sensitive to model specification; 
requires a valid outcome model; 
interpretations can be affected by shared 
variance. 

 

 



22 
 

 

Table S7. Definitions and alternatives names for classification metrics  
1. Kappa Statistic (κ): The Kappa statistic measures the agreement between two raters or classification methods, 
accounting for the agreement that could occur by chance. It ranges from -1 (no agreement) to 1 (perfect 
agreement), with 0 indicating chance-level agreement. 
 
2. F1 Score: The F1 Score is the harmonic mean of precision and recall, balancing the trade-off between false 
positives and false negatives. It is commonly used for imbalanced datasets. 
 
3. Accuracy: Accuracy is the proportion of correctly classified observations (both true positives and true 
negatives) out of all observations. It is sensitive to class imbalance. 
 
4. Balanced Accuracy: Balanced accuracy is the average of sensitivity and specificity, providing a performance 
measure that accounts for class imbalance. It is particularly useful when the dataset is skewed. 
 
5. Sensitivity (Recall, True Positive Rate, TPR): Sensitivity measures the proportion of actual positives 
correctly identified as positive. Also called recall or the true positive rate (TPR). 
 
6. Specificity (True Negative Rate, TNR): Specificity is the proportion of actual negatives correctly identified 
as negative. It is also known as the true negative rate (TNR). 
 
7. Positive Predictive Value (PPV, Precision): PPV indicates the proportion of positive test results that are true 
positives (TP). Also called precision, it assesses how reliable positive classifications are. 
 
8. Negative Predictive Value (NPV):  NPV measures the proportion of negative test results that are true 
negatives (TN), indicating the reliability of negative classifications. 
 
9. False Omission Rate (FOR): FOR is the proportion of false negatives (FN) among all negative predictions, 
indicating how often a negative prediction is incorrect. 
 
10. False Positive Rate (FPR, Fall-out): FPR is the proportion of false positives (FP) among all actual 
negatives. It is also called the fall-out rate and represents the chance of a false alarm. 
 
11. False Negative Rate (FNR, Miss Rate): FNR measures the proportion of actual positives that are incorrectly 
classified as negatives. It is also known as the miss rate. 
 
12. False Discovery Rate (FDR): FDR is the proportion of false positives (FP) among all positive predictions, 
indicating how often a positive prediction is incorrect. 
 
13. Positive Likelihood Ratio (+LR): +LR quantifies how much more likely a positive test result is for someone 
with the condition compared to someone without the condition. 
 
14. Negative Likelihood Ratio (−LR): −LR quantifies how much less likely a negative test result is for someone 
with the condition compared to someone without the condition. 
 
15. Matthews Correlation Coefficient (MCC): MCC evaluates the correlation between observed and predicted 
classifications, considering all confusion matrix elements. It ranges from -1 (inverse prediction) to 1 (perfect 
prediction). 
 
16. Diagnostic Odds Ratio (DOR): DOR combines sensitivity and specificity to describe the odds of a positive 
test result in those with the condition versus those without it. A higher value indicates better test performance. 
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Table S8. Formulas for key classification metrics   
 

 
 

 

 
 

 

 
 

 

 

3. Accuracy and Discordance: 

 
 

                               Discordance: = 1 – Accuracy 
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Table S9. Additional definitions and alternatives names for classification metrics 
• Unique (Independent) contribution: The Unique contribution is the share of model fit (McFadden’s R²) 

attributable solely to a predictor after apportioning overlap with the others. It is computed as the average 
marginal increase in McFadden’s R² when adding the predictor to every possible subset of the remaining 
predictors (Shapley value). By construction it is non-negative. Larger values indicate a stronger independent 
effect. 

 
• Average share: The part of fit associated with a predictor that is shared with other predictors 

(overlap/redundancy) or that arises from mild suppression/synergy. Defined operationally as Average share 
= Standalone − Unique. It can be positive (overlap/redundancy) or negative (suppression). 

 
• Individual (Standalone) contribution: The McFadden’s R² from a single-predictor model that includes only 

that predictor. It reflects explanatory power in isolation, without adjusting for shared effects with other 
predictors. 
 

• Unique (% of total): The predictor’s Unique share as a percentage of the full model’s McFadden’s R²: 
Unique (%) = 100 × (Unique / Total R²). These percentages across predictors should sum to ~100% (up to 
rounding) and provide a decomposition-consistent ranking. 
 

• Average share (% of total): The Average share as a percentage of the full model’s McFadden’s R².  Average 
share (%) = 100 × ((Standalone − Unique) / Total R²). Values may be positive (overlap) or negative 
(suppression). 
 

• Individual (Standalone) (% of total): The Standalone contribution as a percentage of the full model’s 
McFadden’s R²: Standalone (%) = 100 × (Standalone / Total R²). These do not sum to 100% across predictors 
(each single-predictor model captures overlapping signal). 
 

• Joint (shared) component: The portion of fit not uniquely assignable to any single predictor: Joint = Total 
R² − Σ Unique. A negative Joint indicates mild redundancy/overlap among predictors (the sum of Unique 
slightly exceeds the total), which is common and typically small. 
 

• Tjur’s R² (Coefficient of Discrimination, D): Mean predicted probability among cases minus mean 
predicted probability among controls: D = E[p | y=1] − E[p | y=0]. Tjur’s R² measures how well the model 
separates cases from controls in absolute risk space. Threshold-free and easy to interpret: 0 means no 
separation; 1 means perfect separation. Sensitive to calibration (shifts that change mean predicted risks will 
change D). 
 

• Efron’s R²: Fraction of variance in the binary outcome explained by predicted probabilities: 
R²E = 1 − Σ(y − p)² / Σ(y − ȳ)². Efron’s R² is a mean-squared-error–based pseudo-R² comparing the model 
to a null model that always predicts the prevalence ȳ. Can be negative if the model is worse than the null; 
approaches 1 with perfect predictions. Reflects both discrimination and calibration. 
 

• Brier Score: Mean squared error between predicted probabilities and the actual outcomes (0 or 1). The 
reference is usually a naive model that always predicts the outcome prevalence 
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Table S10. BIC and LOOIC values for the 29 models examined. 
Model Is a “Study 

Level Random 
Intercept  
Needed?  

BIC BIC 
Rank 

LOOIC LOOIC 
Rank 

Model C [TLC & FEV₁ (GLI), DLNO (GAMLSS)] No 164.6 1 149.7 2 
Four predictor z-scores 
[TLC & FEV₁ & KCO (GLI), DLNO (GAMLSS)] 

No 
168.5 2 149.8 3 

Model B  
[TLC & FEV₁ & DLCO (GLI), DLNO (GAMLSS)] 

No 
169.6 3 150.9 4 

Four predictor z-scores 
[TLC & FEV₁(GLI), DLNO & DLCO (GAMLSS)] 

No 
170.4 4 151.7 6 

Three predictor z-scores [TLC & FEV₁ & DLCO (GLI)] No 170.6 5 155.4 7 
Five predictor z-scores [(TLC, FEV₁ & FEV₁/FVC & KCO 
(GLI), DLNO (GAMLSS)] 

No 
172.1 6 149.1 1 

Model A [TLC & FEV₁ (GLI), DLCO (GAMLSS)] No 175 7 159.9 8 
Three predictor z-scores 
[TLC & FEV₁ (GLI), DLCO (van der Lee)] 

No  
177.4 8 162.4 9 

Six predictor z-scores [TLC & FEV₁ & FEV₁/FVC & KCO 
(GLI); KNO (van der Lee), DLNO (GAMLSS)] 

No 
178.1 9 151.6 5 

FEV₁/FVC z-scores (GLI) No 209.6 10 201.7 10 
FEV₁ z-scores (GLI) No 214.5 11 206.7 11 
RV/TLC z-scores (GLI) Yes 285.9 12 266.1 12 
Summed z-scores (DLNO + DLCO, GAMLSS) No 288.8 13 281 13 
KNO z-scores (van der Lee) No 292 14 284.1 17 
Two predictor z-scores [DLNO (GAMLSS), DLCO (GLI)] No 294.1 15 282.5 14 
Two predictor z-scores (DLNO & DLCO, GAMLSS) No 294.7 16 282.9 15 
DLNO z-scores (GAMLSS) No 297.7 17 289.9 18 
DLCO z-scores (GLI) No 300.2 18 292.3 19 
Summed z-scores (DLNO+DLCO, SLR) No 301.1 19 293.2 20 

DLCO z-scores (GAMLSS) No 301.9 20 294 22 
DLCO z-scores (SLR) No 304.1 21 296.1 24 
Summed z-scores (DLNO+DLCO, van der Lee) No 304.3 22 296.5 25 
KCO z-scores (GLI) Yes 305 23 283.8 16 
Two predictor z-scores (DLNO, DLCO, SLR) No 305.6 24 293.6 21 
Two predictor z-scores (DLNO, DLCO, van der Lee) No 308.3 25 296.5 25 

  DLCO z-scores (van der Lee) No 309.2 26 301.4 27 
KCO z-scores (van der Lee) Yes 315.8 27 295.4 23 
DLNO z-scores (SLR) Yes 320.1 28 312.1 28 
DLNO z-scores (van der Lee) Yes 322.2 29 314.4 30 
FVC z-scores (GLI) Yes 330.4 30 313.8 29 
TLC z-scores (GLI) Yes 376 31 356.9 31 
VA z-scores (GLI) Yes 413.9 32 395.4 32 
VA z-scores (GAMLSS) Yes 415.3 33 395.4 32 
VA z-scores (SLR) No 428.1 34 420.2 34 

SLR = Segmented Linear Regression (Zavorsky & Cao 2022) ; GAMLSS = Generalized Additive Models of Location Scale & Shape 
(Zavorsky & Cao 2022); GLI = Global Lung Function Initiative Equations; van der Lee = Equations of van der Lee et al., 2007. 
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Table S11. Principal Component (PC) Analyses Loadings (PCs used in model) 

Variable PC1 PC2 PC3 PC4 

FEV₁ z-scores, GLI equations, [Quanjer et al. 2012] 0.24 0.04 0.43 0.18 

FVC z-scores, GLI equations, [Quanjer et al. 2012] 0.18 –0.02 0.42 0.36 

FEV₁/FVC z-scores, GLI equations, [Quanjer et al. 2012] 0.22 0.06 0.27 –0.06 

TLC z-scores, GLI equations, [Hall et al. 2021] 0.02 –0.49 –0.16 0.26 

RV/TLC z-scores, GLI equations, [Hall et al. 2021] –0.12 –0.30 –0.48 –0.17 

DLCO z-scores, SLR, [Zavorsky & Cao 2022] 0.32 0.04 –0.14 0.01 

DLCO z-scores, GAMLSS, [Zavorsky & Cao 2022] 0.32 0.05 –0.12 0.00 

DLCO z-scores, GLI equations, [Stanojevic et al. 2017] 0.32 0.04 –0.15 –0.03 

DLCO z-scores, [van der Lee et al. 2007] 0.32 0.02 –0.13 –0.02 

DLNO z-scores, SLR, [Zavorsky & Cao 2022] 0.31 –0.13 –0.10 0.03 

DLNO z-scores, GAMLSS, [Zavorsky & Cao 2022] 0.32 –0.10 –0.11 0.01 

DLNO z-scores, [van der Lee et al. 2007] 0.31 –0.14 –0.11 0.01 

VA z-scores, SLR, [Zavorsky & Cao 2022] 0.06 –0.35 0.29 –0.52 

VA z-scores, GAMLSS, [Zavorsky & Cao 2022] 0.06 –0.34 0.30 –0.52 

VA z-scores, GLI equations, [Stanojevic et al. 2017] 0.17 –0.44 –0.02 0.29 

KCO z-scores, GLI equations, [Stanojevic et al. 2017] 0.21 0.35 –0.14 –0.24 

KNO z-scores, [van der Lee et al. 2007] 0.26 0.23 –0.11 –0.24 

Principal Component 1 (PC1) represents alveolar-capillary gas transfer (DLNO, DLCO).  Principal 
Component 2 (PC2) represents hyperinflation (TLC, VA). Principal Component 3 (PC3) represents airway 
obstruction (FEV1, FVC) and air trapping (RV/TLC). Principal Component 4 (PC4)  
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Table S12. Logistic Regression Coefficients (Principal Component Analyses 
Model with PC1-PC4) 
 

Term Estimate 
Standard 

Error Statistic 
Odds Ratio 

p-value 

Intercept –2.47 0.26 –9.46 0.084 <0.00001 

PC1 –0.89 0.10 –8.68 0.411 <0.00001 

PC2 –0.63 0.13 –4.86 0.532 <0.00001 

PC3 –0.85 0.15 – 5.58 0.427 <0.00001 

PC4 0.09 0.17 0.54 1.094 0.587 

The baseline odds of COPD when all PCs are zero (mean values) are 0.084, or about 8% of the odds 
of being a control, reflecting a strong baseline tendency toward the control group. A one-standard-
deviation increase in PC1 (better gas alveolar-capillary transfer reduces the odds of COPD by 
approximately 59% (1 – 0.411). A one-standard-deviation reduction in PC2 (reduced hyperinflation 
and air trapping) reduces the odds of COPD by about 47% (1 – 0.532). A one-standard-deviation 
increase in PC3 (increases in FEV1, FVC spirometry and decreases in RV/TLC) reduces the odds of 
COPD by about 57% (1 – 0.427). A one-unit increase in PC4 (higher VA variability, FVC) increases 
the odds of COPD by about 9% (1.094 – 1), but this is not significant, indicating no reliable effect. 
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Table S13. Logistic Regression Coefficients (Reduced PCA Model with PC1-PC3) 

Term Estimate Standard 
Error 

Statistic Odds ratio p-value 

Intercept –2.45 0.26 -9.50 0.086 <0.00001 

PC1 –0.89 0.10 -8.70 0.411 <0.00001 

PC2 –0.63 0.13 -4.86 0.532 <0.00001 

PC3 –0.84 0.15 -5.59 0.432 <0.00001 

The baseline odds of COPD when all PCs are zero (mean values) are 0.064, or about 8% of the odds of 
being a control, reflecting a strong baseline tendency toward the control group. A one-standard-
deviation increase in PC1 (better alveolar-capillary gas transfer) reduces the odds of COPD by 
approximately 59% (1 – 0.411). A one-standard-deviation reduction in PC2 (reduced hyperinflation and 
air trapping) reduces the odds of COPD by about 47% (1 – 0.532). A one-standard-deviation increase 
in PC3 (increases in FEV1, FVC spirometry and decreases in RV/TLC) reduces the odds of COPD by 
about 57% (1 – 0.432).  
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Table S14. Comparison of Model fit 
 

Model AIC BIC 

Full Model (PC1-PC4) 170.3 190.4 

Reduced Model (PC1-PC3) 168.6 184.6 

The odds ratios for PC1, PC2, and PC3 are nearly identical to those of the full 
model, confirming that the exclusion of PC4 does not affect the significant 
predictors. The slight difference in PC3 (0.427 vs. 0.432) is negligible. The reduced 
model maintains the same protective effects: better gas transfer (PC1), less 
hyperinflation (PC2), and improved spirometry (PC3) significantly reduce COPD 
odds 
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Table S15.  Hierarchical partitioning results for the three main predictors of 
emphysema: (FEV1 z-scores, TLC z-scores and DLNO10s z-scores) 
Variable 

 
 
 
 
 

Unique contribution  
(R²) [95%CI] 

 
 
 
 

Average Share 
(R2) [95%CI] 

 
 
 
 

Individual 
(Standalone) 
Contribution 
(R2) [95% CI] 

Variance 
Inflation 
Factor 

FEV₁ Z-scores, GLI equations,  
[Quanjer et al. 2012] 

0.354 [0.272, 0.451] 
 

0.161 [0.120, 0.204] 0.515 [0.409, 0.637] 1.58 

DLNO10s Z-scores, GAMLSS,  
[Zavorsky & Cao 2022] 0.213 [0.154, 0.287] 0.103 [0.059, 0.148] 0.316 [0.228, 0.417] 1.62 

TLC Z-scores, GLI equations,  
[Hall et al. 2021] 
 

0.111 [0.061, 0.179] 
 
 

–0.026 [–0.063, 0.015] 
 
 

0.084 [0.028, 0.166] 1.09 

Variable 
 
 
 

Unique Contribution 
(% of total)  
[95% CI] 

 Average Share 
(% of total) 

[95%CI] 
 
 

Individual  
(Standalone) 
Contribution 
(% of total)  
[95% CI] 

 

FEV₁ Z-scores, GLI equations,  
[Quanjer et al. 2012] 

53.4% [43.2, 62.5] 
 

24.2% [19.0, 28.5] 
 

77.6% [66.0, 86.8]  

DLNO10s Z-scores, GAMLSS,  
[Zavorsky & Cao 2022] 

32.1%[23.7, 41.2] 
 

15.5% [9.2, 21.0] 47.6% [35.5, 59.2]  

TLC Z-scores, GLI equations,  
[Hall et al. 2021] 

16.7% [9.0, 26.6]  –4.0% [–9.4, 2.2] 
 

12.7% [4.2, 24.6]  

Component 
Joint R2 
[95%CI] % of Total [95%CI]  

 

Joint (shared) contribution –0.015 [–0.025,–0.005] –2.2% [–3.6, –0.7]   
Variance-like Summaries     
Total McFadden R2[95% CI] 0.663 [0.577, 0.774] 100.0   
Tjur (R2) [95% CI] (coefficient of 
discrimination) 

0.691 [0.618, 0.760] N/A   

Efron R2 [95% CI] 0.679 [0.574, 0.773] N/A   
Brier Score [95% CI] 0.051 [0.035, 0.069] N/A   

95% CIs are from 20,000 bootstrap resamples. The Independent contribution (Shapley) is the average marginal 
gain in McFadden’s R2 when a predictor is added across all possible subsets; it is the portion of fit uniquely 
attributable to that predictor after apportioning overlap. The Joint (shared) component is the residual fit not 
uniquely assignable to any single predictor; a negative value indicates mild redundancy/suppression among 
predictors (the sum of unique parts slightly exceeds the total, so the joint term is negative). In this table, the 
Unique Contributions sum to 0.354 + 0.213 + 0.111= 0.678, while the total McFadden’s R2 is 0.663, yielding 
Joint = −0.015 (≈ −2.3% of total). Redundancy is therefore small. The ranking by unique importance is FEV₁ 
> DLNO10s > TLC, and all three also show meaningful standalone contributions (0.515, 0.316, 0.084), 
supporting inclusion of all three predictors. (Minor differences reflect rounding.) Specifically, McFadden’s 
R2=0.663 indicates that the 3-predictor DLNO logistic model reduces deviance (or equivalently improves log-
likelihood) by ~66% relative to an intercept-only (null) model. Note that McFadden’s R2 is a relative fit 
measure, not “variance explained” (variance isn’t defined the same way for a binary outcome). 
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Table S16.  Hierarchical partitioning results when adding DLCO10s z-scores (GLI) to 
the 3-predictor DLNO10s (GAMLSS) model of emphysema 

Variable 
 

Unique contribution  
(R²) [95%CI] 

 
 
 
 

Average Share 
(R2) [95%CI] 

 
 
 
 

Individual 
(Standalone) 
Contribution 
(R2) [95% CI] 

Variance 
Inflation 
Factor 

FEV₁ Z-scores, GLI equations,  
[Quanjer et al. 2012] 

0.286 [0.211, 0.377] 
 

0.229 [0.174, 0.288] 0.515 [0.409, 0.637] 1.58 

DLNO10s Z-scores, GAMLSS,  
[Zavorsky & Cao 2022] 

0.122 [0.087, 0.170] 
 

0.194 [0.133, 0.260] 0.316 [0.228, 0.417] 4.44 

TLC Z-scores, GLI equations,  
[Hall et al. 2021] 
 

0.113 [0.062, 0.183] 
 
 

–0.029 [–0.071, 0.018] 
 

0.084 [0.028, 0.166] 1.12 

DLCO10s Z-scores, GLI,  
[Stanojevic et al. 2017] 
 

0.103 [0.071, 0.147] 
 
 

0.207 [0.148, 0.271] 0.310 [0.222, 0.411] 3.93 

Variable 
 
 
 

Unique Contribution 
(% of total)  
[95% CI] 

 Average Share 
(% of total) 

[95%CI] 
 
 

Individual  
(Standalone) 
Contribution 
(% of total)  
[95% CI] 

 

FEV₁ Z-scores, GLI equations,  
[Quanjer et al. 2012] 

42.9% [32.9, 52.4] 
 

34.4% [27.6, 39.8] 
 

77.4% [66.0, 86.8]  

DLNO10s Z-scores, GAMLSS,  
[Zavorsky & Cao 2022] 

18.3%[13.3, 24.1] 
 

29.2% [20.6, 36.5] 47.5% [35.5, 59.2]  

TLC Z-scores, GLI equations,  
[Hall et al. 2021] 

17.0% [9.1, 26.9]  –4.3% [–10.5, 2.6] 
 

12.7% [4.2, 24.6]  

DLCO10s Z-scores, GLI,  
[Stanojevic et al. 2017] 
 

15.5% [10.7, 21.3] 31.1% [22.9, 38.2] 46.5% [34.1, 58.4]  

Component 
Joint R2 
[95%CI] % of Total [95%CI]  

 

Joint (shared) contribution 0.042 [0.022, 0.064] 6.3% [3.3, 9.0]   
Variance-like Summaries     
Total McFadden R2[95% CI] 0.666 [0.582, 0.778] 100.0   
Tjur (R2) [95% CI] (coefficient of 
discrimination) 

0.704 [0.632, 0.772] N/A   

Efron R2 [95% CI] 0.687 [0.581, 0.780] N/A   
Brier Score [95% CI] 0.052 [0.035, 0.070] N/A   
95% CIs are from 20,000 bootstrap resamples. The Independent contribution (Shapley) is the average marginal 
gain in McFadden’s R2 when a predictor is added across all possible subsets; it represents the portion of fit 
uniquely attributable to that predictor after apportioning overlap. The Joint (shared) component is the residual 
fit not uniquely assignable to any single predictor; a positive value indicates shared information/synergy 
among predictors (part of the fit is common across predictors). In this table, the Unique Contributions sum to 
0.286 + 0.122 + 0.113 + 0.103 = 0.624 while the total McFadden’s R2 0.666, yielding Joint = 0.042 (≈ 6.3% 
of total). This implies modest shared structure and limited redundancy. The ranking by unique importance is 
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FEV₁ > DLNO10s > TLC > DLCO10s, and all four also show meaningful standalone contributions (0.515, 
0.316, 0.084, 0.310), supporting inclusion of all predictors. (Minor differences reflect rounding.) Specifically, 
McFadden’s R2=0.666 indicates the 4-predictor logistic model reduces deviance (i.e., improves log-
likelihood) by ~67% relative to a null model; note McFadden’s R2is a relative fit index—not variance 
explained for a binary outcome. VIFs ≤ 4.44 suggest no severe multicollinearity. 

Comparison with Table S14 (3-predictor model): In Table S15, total McFadden’s R2 changes only slightly 
(0.666) compared to Table S14 (vs 0.663); trivial difference within CIs). Discrimination metrics improve 
modestly: Tjur’s R2 0.704 vs 0.691 and Efron’s R2 0.687 vs 0.679; the Brier score is essentially unchanged 
(0.052 vs 0.051). Adding DLCO10s contributes small, but unique information (0.103≈15.5% of total) and 
increases the shared (Joint) fit from −0.015 (≈ −2.2%) to + 0.042 (≈ 6.3%), indicating overlap/synergy with 
the other predictors rather than harmful redundancy. VIFs up to 4.44 suggest moderate, but not severe, 
collinearity (notably between DLNO10s and DLCO10s). 

Although z-scores for DLNO10s (GAMLSS) and DLCO10s (GLI) were strongly correlated (pairwise R2 ≈0.73), 
VIFs were <5 (DLNO10s = 4.44; DLCO10s = 3.93), indicating moderate but not severe multicollinearity. 
Coefficient SEs are inflated (~2×), but prediction remained stable; hierarchical partitioning showed DLCO10s 
adds both unique (ΔR2 ≈ 0.103) and shared information.   



33 
 

 

Table S17.  Model Comparison (B – A) 

Metric 

Model B (4-predictors) 

(FEV1 z-scores (GLI) + 
TLC z-scores (GLI) + 

DLNO10s z-scores 
[GAMLSS] + DLCO10s z-

scores [GLI]) [95% CI] 

Model A (3-predictors) 

(FEV1 z-scores (GLI) + 
TLC z-scores (GLI) + 

DLCO10s z-scores [GLI]) 
[95% CI] 

Δ (B − A) [95% CI] Different? 

MCC 0.770 [0.717, 0.893] 0.800 [0.698, 0.892] -0.031 [-0.073, 0.086] No 

Kappa 0.762 [0.699, 0.893] 0.799 [0.677, 0.892] -0.037 [-0.088, 0.099] No 

Discordance 0.086 [0.034, 0.110] 0.069 [0.034, 0.123] 0.017 [-0.042, 0.039] No 

F1 score 0.817 [0.768, 0.915] 0.843 [0.752, 0.915] –0.026 [–0.062, 0.072] No 

FOR 0.023 [0.003, 0.043] 0.032 [0.007, 0.049] –0.009 [–0.026, 0.006] No 

Accuracy 0.914 [0.890, 0.966] 0.931 [0.877, 0.966] –0.017 [–0.039, 0.042] No 

Balanced accuracy 0.915 [0.892, 0.957] 0.913 [0.883, 0.951] 0.002 [–0.006, 0.032] No 

Sensitivity 0.918 [0.841, 0.987] 0.882 [0.819, 0.973] 0.035 [–0.027, 0.102] No 

Specificity 0.913 [0.875, 0.981] 0.944 [0.861, 0.984] –0.031 [–0.073, 0.057] No 

PPV 0.736 [0.651, 0.924] 0.806 [0.631, 0.932] –0.071 [–0.168, 0.121] No 

NPV 0.977 [0.957, 0.997] 0.968 [0.951, 0.993] 0.009 [–0.006, 0.026] No 

FPR 0.087 [0.019, 0.125] 0.056 [0.016, 0.139] 0.031 [–0.057, 0.073] No 

FNR 0.082 [0.013, 0.159] 0.118 [0.027, 0.181] –0.035 [–0.102, 0.027] No 

FDR 0.264 [0.076, 0.349] 0.194 [0.068, 0.369] 0.071 [–0.121, 0.168] No 

+LR 10.6 [7.6, 47.0] 15.8 [6.8, 52.7] –5.3 [–25.3, 15.9] No 

-LR 0.1 [0.0, 0.2] 0.1 [0.0, 0.2] –0.0 [–0.1, 0.0] No 

DOR 117.4 [77.1, 767.8] 127.1 [67.8, 571.3] –9.7 [–142.2, 404.4] No 

Both models were fit as simple logistic regressions because the “Study” random intercept was not retained (Model A: AICGLM = 
148.6 vs AICGLMM=150.6; Model B: 149.5 vs 151.54; in both cases τ² ≈ 0 and adding the random intercept worsened AIC by ~2). 
Operating thresholds were chosen by optimal Youden’s J on model-specific predictions (Model A: J-optimal p = 0.276; Model B: p = 
0.123) and re-optimized within each bootstrap draw. CIs come from 10,000 subject-level bootstrap resamples; a difference is called 
“Different?” only when the 95% CI for Δ(B−A) excludes 0. No metric showed a statistically significant difference between models 
(all Δ(B−A) 95% CIs overlapped 0). Point estimates suggest that adding DLNO10s (Model B) trades a small increase in sensitivity (Δ 
≈ +0.047) for a decrease in specificity (Δ ≈ −0.043) and PPV (Δ ≈ −0.105), leaving accuracy (~0.94 vs ~0.914) and balanced accuracy 
(~0.915 vs ~0.914) essentially unchanged. MCC (Δ ≈ −0.047), κ (Δ ≈ −0.055), likelihood ratios (Δ+LR ≈−9.5; Δ−LR ≈− 0.05), and 
DOR (Δ ≈−31.1) were numerically lower with the 4-predictor model, but with wide CIs that include no effect. Overall, the 4-predictor 
model does not provide a statistically demonstrable improvement over the 3-predictor model at the Youden-optimized thresholds. 
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Table S18.  Model comparison (C – A) 

Metric 

Model C (3-predictors) 

(FEV1 z-scores (GLI) + 
TLC z-scores (GLI) + 

DLNO10s z-scores 
[GAMLSS]) [95% CI] 

Model A (3-predictors) 

(FEV1 z-scores (GLI) + TLC 
z-scores (GLI) + DLCO10s z-

scores [GLI]) [95% CI] 

Δ (C − A) [95% CI] Different? 

MCC 0.817 [0.707, 0.892] 0.800 [0.698, 0.892] 0.017 [–0.080, 0.079] No 

Kappa 0.817 [0.688, 0.891] 0.799 [0.677, 0.892] 0.018 [–0.095, 0.092] No 

Discordance 0.061 [0.034, 0.118] 0.069 [0.034, 0.123] –0.007 [–0.039, 0.042] No 

F1 score 0.855 [0.759, 0.915] 0.843 [0.752, 0.915] 0.013 [–0.068, 0.066] No 

FOR 0.034 [0.007, 0.046] 0.032 [0.007, 0.049] 0.003 [–0.024, 0.014] No 

Accuracy 0.939 [0.882, 0.966] 0.931 [0.877, 0.966] 0.007 [–0.042, 0.039] No 

Balanced accuracy 0.914 [0.887, 0.953] 0.913 [0.883, 0.951] 0.000 [–0.016, 0.027] No 

Sensitivity 0.871 [0.831, 0.976] 0.882 [0.819, 0.973] -0.012 [–0.055, 0.095] No 

Specificity 0.957 [0.868, 0.982] 0.944 [0.861, 0.984] 0.012 [–0.074, 0.059] No 

PPV 0.841 [0.642, 0.930] 0.806 [0.631, 0.932] 0.034 [–0.168, 0.130] No 

NPV 0.966 [0.954, 0.993] 0.968 [0.951, 0.993] –0.003 [–0.014, 0.024] No 

FPR 0.043 [0.018, 0.132] 0.056 [0.016, 0.139] –0.012 [–0.059, 0.074] No 

FNR 0.129 [0.024, 0.169] 0.118 [0.027, 0.181] 0.012 [–0.095, 0.055] No 

FDR 0.159 [0.070, 0.358] 0.194 [0.068, 0.369] –0.034 [–0.130, 0.168] No 

+LR 20.1 [7.2, 49.6] 15.8 [6.8, 52.7] 4.3 [–25.2, 21.5] No 

-LR 0.14 [0.0, 0.2] 0.13 [0.0, 0.2] 0.01 [–0.1, 0.1] No 

DOR 148.5 [71.2, 612.2] 127.1 [67.8, 571.3] 21.4 [–184.1, 265.9] No 

Both models were analysed with ordinary logistic regression because adding a “Study” random intercept did not improve fit (Model 
C: AICGLM =148.6 vs AICGLMM =150.6, τ² ≈ 0; Model A: AICGLM=154.6 vs AICGLMM =154.9, τ² = 0.213). Operating thresholds were 
chosen by maximizing Youden’s J on each model’s predicted probabilities (Model C: p = 0.276; Model A: p = 0.258) and re-optimized 
within every bootstrap replicate. Confidence intervals are percentile 95% CIs from 50,000 paired subject-level bootstrap resamples; a 
difference is flagged “Different?” only when the 95% CI for Δ(C−A) excludes 0. No metric met this criterion. Point estimates suggest 
Model C yields slightly higher specificity (Δ ≈ +0.012) and PPV (Δ ≈ +0.034) with a small reduction in sensitivity (Δ ≈ −0.012); 
overall accuracy (Δ≈+0.007) and balanced accuracy (Δ ≈ 0.000) are essentially unchanged. Differences in MCC (Δ ≈ +0.017), κ (Δ ≈ 
+0.018), likelihood ratios (Δ +LR ≈ +4.25; Δ −LR ≈ +0.011), and DOR (Δ ≈ +21.4) are modest with wide CIs that include no effect. 
Thus, at Youden-optimized thresholds, Model C does not provide a statistically significant improvement over Model A. 
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Table S19. Reclassification summary at Youden-optimized thresholds (B − A; C − 
A) 

 Metric 
B – A 

Estimate 

B – A 

SE 

C – A 

Estimate 

C – A 

SE 

1 Net Reclassification Improvement (NRI) 
(overall net improvement in reclassification) 

0.004  
[–0.013, 0.064] 0.020 0.001  

[–0.032, 0.054] 0.021 

2 Net proportion of true positives (NRI+) 
reclassified to higher risk  
 

0.035  
[–0.027, 0.101] 0.035 –0.012  

[–0.054, 0.096] 0.038 

3 Net proportion of true‐negatives (NRI–) 
reclassified to lower risk  
 

–0.031  
[–0.072, 0.058] 0.032 0.012  

[–0.075, 0.059] 0.033 

4 The fraction of true positives that gets 
“upped” in risk [Pr (Up | Case)] 
 

0.035  
[0.000, 0.102] 0.032 0.000  

[0.000, 0.098] 0.030 

5 The undesirable fraction for cases (lowered 
risk when they have COPD)  
[Pr(Down | Case) 
 

0.000  
[0.000, 0.030] 0.009 0.012  

[0.000, 0.056] 0.017 

6 The fraction of true‐negatives (controls) that 
gets “down‐rated” [Pr (Down | Control)] 
 

0.003  
[0.000, 0.065] 0.018 0.019  

[0.000, 0.069] 0.020 

7 The undesirable fraction of true‐negatives 
(controls) that gets “up‐rated” [Pr (Up | 
Control)] 

0.034  
[0.000, 0.072] 0.020 0.006  

[0.000, 0.077] 0.022 

8 Integrated Discrimination Index (IDI). This is 
the average predicted‐risk gap between cases 
and controls 
 

0.014* 
[0.001, 0.047] 

 
 

0.012 
 
 

0.013  
[–0.010, 0.045] 

 
 

0.014 
 
 

SE = standard error; CI = confidence interval. 

Model A (3-predictors): FEV1 z-scores (GLI)+ TLC z-scores (GLI) + DLCO10s z-scores [GLI]  

Model B (4-predictors): FEV1 z-scores (GLI) + TLC z-scores (GLI)+ DLNO10s z-scores [GAMLSS] + DLCO10s z-
scores [GLI] 

Model C (3-predictors): FEV1 z-scores (GLI) + TLC z-scores (GLI) + DLNO10s z-scores [GAMLSS] 

Operating decision thresholds were the Youden-J optima from each model’s ROC curve (Model A: 0.230; 
Model B: 0.254; Model C: 0.320), reflecting a single, pre-specified decision rule per model. Calibration 
intercept and slope are computed on model-predicted probabilities and do not depend on the decision threshold 

Reclassification metrics use the “up”/“down” convention: “Up” = higher predicted risk under the right-hand 
model (B or C) vs Model A; “Down” = lower predicted risk. NRI+ = Pr(Up | Case) − Pr(Down | Case); NRI− 
= Pr(Down | Control) − Pr(Up | Control); NRI = NRI+ + NRI−. IDI is the change in the average predicted-
risk gap between cases and controls. Estimates and 95% CIs come from 50,000 paired bootstrap resamples. 
Statistical significance is inferred when the 95% CI excludes 0 (asterisk)*.  In these data, only the IDI for B 
− A showed a small but statistically significant improvement (0.014 [0.001, 0.047]); all other reclassification 
components for B − A and C − A had CIs spanning 0. 
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Table S20. Reclassification Summary at category-free reclassification (B − A; C − 
A) 

 Metric 
B – A 

Estimate 

B – A 

SE 

C – A 

Estimate 

C – A 

SE 

1 Net Reclassification Improvement (NRI) 
(overall net improvement in reclassification) 

0.341  
[–0.123, 0.962] 0.275 0.290 

 [–0.467, 0.882] 0.337 

2 Net proportion of true positives (NRI+) 
reclassified to higher risk  

0.176  
[–0.100, 0.562] 0.169 0.200  

[–0.265, 0.525] 0.200 

3 Net proportion of true‐negatives (NRI–) 
reclassified to lower risk  
 

0.164  
[–0.087, 0.457] 0.141 0.090  

[–0.258, 0.413] 0.167 

4 The fraction of true positives that gets 
“upped” in risk [Pr (Up | Case)] 
 

0.588*  
[0.450, 0.781] 

0.084 0.600*  
[0.368, 0.763] 

0.100 

5 The undesirable fraction for cases (lowered 
risk when they have COPD)  
[Pr(Down | Case) 

0.412*  
[0.219, 0.550] 

0.084 0.400*  
[0.237, 0.632] 

0.100 

6 The fraction of true‐negatives (controls) that 
gets “down‐rated” [Pr (Down | Control)] 
 

0.582* 
[0.456, 0.729] 

0.070 0.545*  
[0.371, 0.706] 

0.083 

7 The undesirable fraction of true‐negatives 
(controls) that gets “up‐rated” [Pr (Up | 
Control)] 

0.418* 
[0.271, 0.544] 

0.070 0.455*  
[0.294, 0.629] 

0.083 

8 Integrated Discrimination Index (IDI). This is 
the average predicted‐risk gap between cases 
and controls 

0.014*  
[0.001, 0.046] 

0.012 0.013  
[–0.010, 0.046] 0.014 

SE = standard error; CI = confidence interval. 

Model A (3-predictors): FEV1 z-scores (GLI)+ TLC z-scores (GLI) + DLCO10s z-scores [GLI]. The calibration 
intercept was 0.00[ –0.44, 0.44], and calibration slope was 1.00 [0.80, 1.21].  

Model B (4-predictors): FEV1 z-scores (GLI) + TLC z-scores (GLI)+ DLNO10s z-scores [GAMLSS] + DLCO10s z-
scores [GLI]. The calibration intercept was 0.00[ –0.45, 0.45], and calibration slope was 1.00 [0.79, 1.21]. 

Model C (3-predictors): FEV1 z-scores (GLI) + TLC z-scores (GLI) + DLNO10s z-scores [GAMLSS]. The 
calibration intercept was 0.00[ –0.45, 0.45], and calibration slope was 1.00 [0.79, 1.21]. 

SE = standard error. DLCO10s z-scores (GLI) = fitted DLCO z-scores using GLI references equations for Whites; FEV1 
z-scores (GLI) = fitted FEV1 z-scores using GLI references equations for Whites; TLC z-scores (GLI) = fitted TLC z-
scores using GLI references equations for Whites; DLNO10s z-scores (GAMLSS) = fitted DLNO z-scores using the 
GAMLSS reference equations for Whites (Zavorsky & Cao, 2022). Model A is the 3-predictor model of DLCO10s z-scores 
(GLI), FEV1 z-scores (GLI) and TLC z-scores (GLI). Youden’s J–optimal threshold was derived from the ROC 
curve. This simulates a real-world scenario in which one must commit to a single decision rule across all models. 
Youden’s J threshold for the Model A was 0.230, for the 4-predictor model was 0.254, and for the 3-predictor model with 
DLNO10s z-scores [DLNO10s z-scores (GAMLSS), FEV1 z-scores (GLI), TLC z-scores (GLI), Youden’s J Threshold was 
0.32.  NRI+ = Pr(Up | Case) - Pr(Down | Case). NRI– = Pr(Down | Ctrl) - Pr(Up | Ctrl) for numbers 1 to 11 above, 
Statistical significance is inferred when the 95% confidence interval does not cross zero*.  50,000 bootstrap 
samples were used to generate the 95% CI. 
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Figure S1.  The age and sex breakdown between those with emphysema and 
those without emphysema in the pooled dataset, after filtering (n=323 controls; n 
= 85 with emphysema) 
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Figure S2. The association between DLNO10s z-scores and DLCO10s z-
scores in the filtered pooled dataset 
Reference equations of Zavorsky & Cao (2022) 13 were used to generate z-scores. The reference 
equations of Zavorsky & Cao (2022)13 were used as they account for the pulmonary function 
device used to measure DLNO10s and DLCO10s. Breath-hold time was 9.6 ± 0.6 s. solid black 
line is the best fit line. The dashed black lines are the 95% prediction CI. The purple dashed lines 
are the location of the lower limit of normal (i.e. z-score = –1.645). red circles = smokers with 
emphysema. Green circles represent smokers without emphysema.  
 
DLNO10s z-scores = 0.871·(DLCO10 z-scores) – 0.126, R2 = 0.71, standard error of the estimate 
= 0.692, p < 0.0001. The 95% CI for the slope = 0.816 to 0.925, n = 422 (323 smokers without 
emphysema and 85 smokers with emphysema). Segmented, “Piecewise” equations were used.  
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Figure S3. Bayesian Information Criterion (BIC) and Leave-One-Out Information 
Criterion (LOOIC) of models for emphysema prediction and generalizability.   

Models are ranked by their difference in BIC (black circles) and LOOIC (white circles) relative to the top-
performing model (top = best). This figure is a continuation of Figure 1 in the manuscript in which the top 
17 models are presented.  Here, the first ranked model (Model C, the top ranked model) is there for perspective, 
and then 18th through 34th ranked models are presented below. BIC penalizes model complexity; LOOIC 
evaluates predictive performance via cross-validation.  

• Red zone (BIC or LOOIC difference ≤ 2.2): Models nearly as good as the best model. 
• Yellow zone (BIC or LOOIC difference 2.3–5.9): Models with substantial but acceptable 

performance differences compared to the best model. 
• Green zone (BIC or LOOIC difference 6.0–9.2): Models with considerably weaker performance 

compared to the best model.  
• Purple zone (BIC or LOOIC difference ≥ 9.3): Models with significantly poorer fit compared to the 

best model. 

The x-axis shows the difference from the best model—smaller is better. The best-performing model is the 
three-predictor z-score model of TLC + FEV1 + DLNO10s (GAMLSS) derived from the GLI equations 9,10 and 
DLNO z-scores from the GAMLSS equations 13 (n=323 smokers with without emphysema; n= 85 smokers 
with emphysema). 
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Figure S4. ROC and PR Curves with cross-validation performance for the three-
predictor z-score model of TLC z-scores + FEV1 z-scores + DLNO10s (GAMLSS)  

(A) Receiver Operating Characteristic (ROC) curve showing the trade-off between sensitivity (true positive 
rate) and 1-specificity (false positive rate) across 5×5 repeated cross-validation. (B) Precision-Recall (PR) 
curve illustrating the relationship between precision (positive predictive value) and sensitivity. Shaded areas 
reflect variability across folds based on 100,000 bootstrapped samples; the red dot marks the optimal operating 
point on each curve. 

The ROC curve shows strong performance with high sensitivity and low false positive rates (AUROC = 0.96; 
95% CI: 0.95–0.97). The PR curve starts with precision near 1.0 at low recall but declines to ~0.4 at full recall, 
with wider variability at higher recall values. Youden’s J = 0.82; threshold = 0.30. Other metrics include PR = 
0.91 (95% CI: 0.88–0.93), sensitivity = 0.87 (95% CI: 0.83–0.90), specificity = 0.95 (95% CI: 0.95–0.96), and 
MCC = 0.81 (95% CI: 0.78–0.84). Results are based on 323 smokers without and 85 with emphysema. Logistic 
regression outputs for this model are reported in Table 2. 
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Figure S5. Discriminatory classification performance for the bottom 24 predictive 
models.     
The Matthews correlation coefficient (MCC) and the area under the receiver operating characteristic curve 
(AUROC) are shown for models 11 through 34 (the bottom 24 models). Models sharing the same color for 
their point estimates are not statistically different from one another, based on 10 000 bootstrapped samples (2-
sided) and after correction for multiple comparisons at a false-discovery-rate of 5% using the Benjamini-
Hochberg procedure. 
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Figure S6.  Scree plot of variance explained by principal components in COPD 
analysis 

This scree plot displays variance explained per principal component (orange line/points) and cumulative 
variance (blue line). PC1–PC4 explain 51.5%, 16.6%, 11.6%, and 9.5% of the variance, respectively, for a 
cumulative total of 89.2%. The sharp drop after PC1 suggests an “elbow” point, with most variance captured 
in the first three components. 

Although including PC4 would raise total explained variance above the common 85% threshold, logistic 
regression showed no meaningful association between PC4 and COPD status. The coefficient (β = 0.09) 
represents the change in the log odds of having COPD for each one-unit increase in PC4, controlling for other 
components. This effect was small and non-significant (SE = 0.17; z = 0.54; p = 0.587), with an odds ratio of 
1.09 (95% CI ≈ 0.78–1.53), indicating no clear relationship. For parsimony and interpretability, only PC1–
PC3 were retained. See Tables S11–S14 for full results. 
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Figure S7.  Decision curve analysis for COPD classification models  
Net benefit is plotted against the threshold probability (0–0.25) using out-of-fold predictions from repeated 
cross-validation. Curves compare three models with two references: Treat All (light grey) and Treat None 
(dashed black). Shaded bands represent 95% bootstrap CIs. Across the clinically relevant range (probability 
threshold = 0–0.25), all three models outperform Treat None, and—except at very low thresholds—also 
outperform Treat All. Once the probability threshold exceeds the disease prevalence (~0.21), the net benefit of 
Treat All drops to zero, while the models remain positive. The 4-predictor model performs similarly to both 3-
predictor models; their curves overlap with minimal differences across thresholds. Net benefit remains around 
0.16–0.20—translating to 16–20 more true positives per 100 patients compared to treating none. In practice, 
either 3-predictor model (DLCO10s or DLNO10s) offers nearly the same clinical utility as using both, with little 
added value from including both measures. 
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