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Supplementary Methods
Study Design and Population

We conducted an individual participant data (IPD) meta-analysis pooling raw, participant-level data from
four European hospital cohorts'. IPD enabled harmonization of variables, uniform quality control (QC), and
re-analysis using consistent definitions across studies'. The pooled dataset contained 496 participants. Body
weight was missing in two cohorts®? and was imputed using a regression derived in 230 adults aged 50—-69

years:

weight (kg) = 0.59 x height (cm) + 7.97 X sex (I = male; 0 = female) — 33.57; R>=0.51; SEE = 8.62 kg.

In Moinard & Guénard (1990)?, raw data were embedded in the article; 10 COPD cases lacked explicit
emphysema status. Based on clinical presentation (mean FEV/FVC = 0.56; arterial PO = 58 mmHg; DLCO
z-score= —3.04), these were classified as emphysema for the present analyses. After QC filtering (see below),
three cohorts remained>*, comprising 408 participants: 85 with CT-confirmed emphysema and 323 smokers
without emphysema. Most were current or former smokers (86%; IQR 14-43 pack-years). The fourth cohort
used a 5-s NO—-CO breath-hold time (BHT)>. Although acceptable under the DLNO ERS technical standards®,
it was excluded to avoid protocol heterogeneity. Attempts to obtain additional NO—CO double-diffusion
datasets were unsuccessful; one prominent group declined participation despite repeated outreach’. The final

harmonized dataset is available in a cloud repository?®.

Construction of Data Quality Table

For each cohort, G.S.Z. abstracted whether the following pre-specified items were available and analysable:
(1) presence of both COPD (Disease = 1) and non-COPD (Disease = 0) groups; (2) pack-years; (3) percent
emphysema by CT volume; (4) smoking history; (5) mMRC dyspnoea score; (6) sex; (7) height; and (8)
weight. Technical quality (Item 9) was assessed record-by-record using harmonized criteria for the
simultaneous 10 + 2 s NO—CO protocol. A record failed quality control if any of the following were present:

BHT outside 8.0-12.0 s; VA/TLC > 1.00; RV/TLC < 0.20; inspired volume/FVC (IV/FVC) < 0.85; or other
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documented protocol deviations. Study-level quality control was the proportion of records passing all checks;
studies with >95% pass rate was marked v/, otherwise X with the pass percentage. The 5-s BHT cohort® was
not included in QC tallies to maintain protocol homogeneity (90% of its records met the other QC criteria). In

Table S1, v denotes availability/analytic readiness; X denotes absence/unusable data. The “Total number of

checkmarks” is the count of v across the nine items. See Table S1.

Variable Standardization and Analytic Quality Control

Spirometry, lung volumes, and diffusing capacity indices were standardized to z-scores (GLI for spirometry”,
lung volumes'®, DLCO10s'*'2, VA10s' 12, and KCO1s! '), Device-appropriate DLNO reference equations'?
and 10-s breath-hold DLNO/KNO equations'* were applied to ensure cross-study comparability. When DLNO
and DLCO were measured simultaneously, DLCO z-scores were derived from the same sources as the DLNO

reference equations'>!',

Analytic QC applied the following exclusions prior to modelling: cases that had breath-hold outside
812 s; VA/TLC > 1.0; FEV/FVC > 1.0; RV/TLC < 0.20; and inspired volume/FVC < 0.85. Analyses were

restricted to complete cases after QC. Age and sex distributions of the final dataset are shown in Figure S1.

LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is a powerful regularization technique used
in regression analysis to simultaneously perform variable selection and shrinkage, enhancing model
interpretability and prediction accuracy, particularly in datasets with many predictors or multicollinearity'™!°.
LASSO modifies the standard linear or logistic regression objective by adding an L1 penalty, the sum of the
absolute values of the coefficients, to the loss function. This penalty, controlled by a tuning parameter A,
shrinks the coefficients of less predictive variables toward zero, effectively excluding them from the model,

while retaining and estimating the coefficients of the most relevant predictors'>!®. For binary outcomes like

emphysema (yes emphysema or no emphysema), LASSO is applied within logistic regression, minimizing
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the negative log-likelihood plus the A times the sum of absolute coefficients, encouraging sparsity by setting
some coefficients to zero. This sparsity is particularly useful for fitting the z-scores — TLC, RV/TLC, FEV,
FVC, FEVI/FVC, DLCO1¢s, DLNOj¢s, VAios, KCO10s, and KNOjos — as predictors, allowing LASSO to

identify a subset of these lung function metrics most strongly associated with emphysema.

LASSO was implemented to identify the most important predictor variables for emphysema,
leveraging a dataset comprising 408 subjects with complete cases (after filtering). The process began with
preparing the data, ensuring the predictors (z-scores standardized relative to reference equations like GLI or
GAMLSS) were numeric, and the outcome (emphysema) was binary. A LASSO logistic regression model
was fit, transforming the predictors into a matrix and the outcome into a vector, then applying cross-validation
(e.g., 10-fold) to determine the optimal A that minimizes prediction errors, such as log-loss or misclassification
errors. This optimal A was used to fit the final LASSO model, which shrank some coefficients to zero, thereby
selecting the most relevant z-scores—potentially those variables most physiologically linked to airflow
limitation, gas transfer, and hyperinflation in emphysema—while excluding less informative variables. With
non-zero coefficients, the resulting model provides a sparse, interpretable set of predictors, improving standard
logistic regression by addressing multicollinearity among lung function metrics and reducing overfitting. The
selected predictors, their coefficients, and model performance metrics (e.g., area under the ROC curve,
accuracy) would then be used in binary logistic regression analyses and compared to other methods like
principal component analysis (PCA) or hierarchical partitioning to validate findings and highlight LASSO’s

role in simplifying the model for emphysema prediction.

Binary Logistic Regression

Once LASSO determined possible predictors of emphysema, binary logistic regression was used to determine
the best model. Both generalized linear models (GLM) and generalized linear mixed-effects models (GLMM)
with a random intercept for "Study" were employed to account for potential clustering effects. Models were

evaluated based on BIC (frequentist)'""!” method — and the LOOIC (Bayesian)'®!®, which implemented
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Markov Chain Monte Carlo (MCMC) sampling to generate posterior distributions for model parameters?®2!.
Weakly informative priors were used: a normal distribution with mean zero and standard deviation one for all
regression coefficients, a Student z-distribution with three degrees of freedom (location zero, scale 2.5) for the
intercept, and an exponential distribution with rate one for the standard deviation of the study-level random
effect. Models were fit with four MCMCs, each with 15,000 thousand iterations, including 5,000 warm-up
iterations; the target acceptance probability was set to approximately 0.99999 and the maximum tree depth
was fifteen. Predictive performance was compared using Pareto-smoothed importance-sampling leave-one-

out cross-validation with moment matching, and relative support with model weights summarized based on

stacking and pseudo-Bayesian model averaging.

We also fit a focused three-predictor model—forced expiratory volume in one second (standardized
score), total lung capacity (standardized score), and diffusing capacity for nitric oxide from the generalized
additive models for location, scale, and shape framework (standardized score)—with and without a study
random intercept, and compared models by the difference in expected log predictive density, choosing the
simpler model when its performance was within about one standard error of the best model. In addition, we
examined projection-predictive variable selection with forward selection (falling back to a generalized linear
model if the generalized linear mixed-model procedure failed), computed variance inflation factors and
standard generalized-linear-model fit metrics (including the Akaike information criterion and the Bayesian
information criterion). The Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) are
not directly applicable to the LOOIC'®. The frequentist (BIC) and Bayesian (LOOIC) analytical methods

assessed model superiority, with detailed explanations provided in Tables S4-S5.

Principal Component Analysis and Hierarchical Partitioning Analysis

To explore the underlying structure of lung function predictors and their association with emphysema, we
performed Principal Component Analysis (PCA) on standardized z-scores of the best predictors and compared

it with the additional of fitted DLCO z-scores obtained from GLI equations !'"'?. PCA was conducted to reduce
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the dimensionality of these correlated predictors into principal components (PCs) that explain the maximum
variance, with no additional scaling required due to their z-score standardization. The resulting PCs were then
used as predictors in a binary logistic regression model to assess their predictive power for emphysema (coded
as 0/1 in the Disease variable), with model fit evaluated using pseudo-R? metrics (McFadden’s R?) and
information criteria (AIC, BIC). To quantify the relative contribution of each predictor to the variance
explained in emphysema, we applied hierarchical partitioning. This involved fitting a logistic regression model
with all predictors, partitioning the marginal R? into unique and shared contributions, reporting percentages
of the total explanatory power for each predictor, adjusted for their collinearity. Both analyses were performed
on a dataset of 408 subjects, with missing data handled by listwise deletion to ensure complete cases. A
comparison of PCA vs hierarchical partitioning is provided in Table S6. Results of PC analyses are provided

in Tables S11-S14 and Figure S4, with Hierarchical partitioning results in Tables S15-S16.

AUROC, MCC and Kappa Statistics

Classification performance was measured using the area under the receiver operating characteristic curve
(ROC) and Matthews Correlation Coeftficient (MCC). The 95% CI for the ROC models was calculated using
DeLong’s method for imbalanced datasets 222°. The false discovery rate was controlled among AUROCS at

0.01 using the Benjamini-Hochberg procedure 2*.

While AUROC assesses discriminatory ability, MCC provides a balanced evaluation in datasets with

class imbalances 2>’

, making it a preferred metric for binary classifications. The 95% Confidence Interval
(CI) for the MCC were generated from 100,000 bootstrapped samples. In addition, other metrics were used to

classify those that had progressed to emphysema compared to those that did not. The name, definitions, and

formulas for other classification metrics used, are present in Tables S7-S9.

Kappa statistical analysis was conducted to evaluate the level of agreement between three prespecified

logistic models:



e Model A (3 predictors): FEV: z-scores [GLI] + TLC z-scores [GLI] + DLCO1¢s z-scores [GLI]
e Model B (4 predictors): Model A + DLNOos z-scores [GAMLSS]

e Model C (3 predictors): FEV: z-scores [GLI] + TLC z-scores [GLI] + DLNO s z-scores [GAMLSS]

The discordance between equations was calculated as 1—« where « reflects the concordance®®. Discordance
categories were defined as follows: (1—«k) < 0.1 = Negligible discordance; 0.1 < (1-«k) < 0.20 = Very low
discordance; 0.21 < (1—«) < 0.40 = Low discordance; 0.41 < (1-«k) < 0.60 = Moderate discordance; 0.61<
(1-x) < 0.79 = High discordance; (1-«) > 0.8 = Very high discordance. The Kappa analysis quantified
differences in LLN classifications derived from Zavorsky & Cao (2022)'* compared to van der Lee et al.
(2007) '* and GLI equations. These comparisons provided insights into the variability of LLN thresholds and

potential impacts on clinical classifications.

Net Reclassification Index (NRI) & Integrated Discrimination Index (IDI)

We compared three prespecified logistic models:

e Model A (3 predictors): FEV: z-scores [GLI] + TLC z-scores [GLI] + DLCO0s z-scores [GLI]
e Model B (4 predictors): Model A + DLNO¢s z-scores [GAMLSS]

e Model C (3 predictors): FEV: z-scores [GLI] + TLC z-scores [GLI] + DLNOos z-scores [GAMLSS]

Because patients derived from multiple studies, we evaluated a study-level random intercept (1/Study) via a
prespecified decision rule. For each model we fit (i) a simple logistic regression and (ii) a Generalized Linear
Mixed-Model (GLMM) with a Study random intercept. We retained the GLMM only if (a) the random-effect
variance was >0 (non-singular fit) and (b) AIC improved by >2 versus the Generalized Linear Model (GLM).

Otherwise, we used the GLM. (In our data, all three final models were GLMs).

For each fitted model we converted predicted probabilities to yes/no decisions using the Youden’s J—

optimal threshold (threshold that maximizes sensitivity + specificity — 1). The threshold was re-optimized
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within every bootstrap resample so that uncertainty in the operating point was propagated into all interval

estimates.

At the Youden-optimized operating point we computed accuracy, balanced accuracy, sensitivity,
specificity, PPV, NPV, FPR, FNR, FDR, FOR, F1, Cohen’s k, Matthews correlation coefficient (MCC),
likelihood ratios (+LR/—LR), diagnostic odds ratio (DOR), and discordance. Model-to-model differences
(B—A and C—A) were obtained with a paired bootstrap (see below); we labelled a difference “statistically
different” only when the 95% bootstrap CI excluded 0. Tables S17-S18 presents the comparison results for

Models A, B, and C.
We quantified reclassification between models two ways:

1. Threshold-based reclassification at the Youden-optimized cut-points (Table S19):
o NRI=NRI+ + NRI-, where NRI+ = Pr(Up | Case) — Pr(Down | Case) and NRI— = Pr(Down |
Control) — Pr(Up | Control).
o We also report the four component proportions: Pr(Up | Case), Pr(Down | Case), Pr(Down |
Control), Pr(Up | Control).
o IDI (Integrated Discrimination Index) is the difference in mean predicted risk between cases
and controls for the two models.
2. Category-free reclassification: the same NRI components and IDI computed without any fixed risk

categories (Table S20).

All reclassification results are shown for B—A (adding DLNO to Model A) and C—A (replacing DLCO with

DLNO) (Tables S19-S20).

For each model we assessed calibration by logistic recalibration:

logit{ P(Y = 1)} = a + B logit(p),
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reporting the calibration intercept o and calibration slope B. Intercept = 0 and slope = 1 indicate good
calibration. ClIs were obtained by bootstrap. Uncertainty was quantified with 50,000 bootstrap resamples. For
GLMs we used subject-level resampling; had a GLMM been retained we would have used a cluster (Study)
bootstrap. For model comparisons (B—A, C—A) we used a paired bootstrap that resampled the same subjects
(or the same clusters) for both models within each draw. For each quantity we report the bootstrap standard

error and the percentile 95% CI (2.5th—97.5th percentiles across resamples).

Random-Intercept Screening and Model Ranking Methods

Bayesian fits with weakly informative priors was used—Normal(0, 1) for fixed effects; Student-t(3, 0, 2.5)
for the intercept; Exponential(1) for the standard deviation of random intercepts—run with four Markov chain
Monte Carlo (MCMC) chains, up to 20,000 iterations, and Pareto-smoothed importance-sampling leave-one-
out cross-validation (PSIS-LOO) with moment matching. If any Pareto k diagnostic exceeded 0.7, we re-fit
those cases using exact leave-one-out refits (reloo). We compared random-intercept and fixed-effects versions
using the difference in expected log predictive density (AELPD) and its standard error (SE); the random-
intercept variant was chosen when AELPD > SE. If Bayesian fitting failed, we fit generalized linear models /
generalized linear mixed models (GLM/GLMM) and selected the variant with the lower Bayesian Information

Criterion (BIC).

For each chosen variant we computed the area under the receiver operating characteristic curve, the
Matthews correlation coefficient (MCC), and BIC; MCC was optimized over the classification threshold. For
out-of-sample robustness, MCC was estimated using stratified 5-fold cross-validation (CV), selecting the

threshold on training folds and evaluating on held-out folds.

All 34 models were ranked using PSIS-LOOIC and BIC (lower values indicate better fit/parsimony)

and AUROC and MCC (higher values indicate better discrimination). “Equal-weight” rankings averaged
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ranks across the available metrics (weights renormalized if any metric was missing; PSIS-LOOIC was

excluded if unavailable). “Weighted” rankings followed six prespecified schemes:

Weighted Average (LOOIC 0.40, AUROC 0.30, MCC 0.20, BIC 0.10). Prioritizes generalization
(most significant weight on LOOIC) while still valuing discrimination (AUROC, MCC) and
parsimony (BIC). BIC is modest to avoid double-penalizing complexity, given that LOOIC already
favours simpler, better-generalizing models.

Generalization-Emphasis (LOOIC 0.55, AUROC 0.20, MCC 0.15, BIC 0.10). For use when
out-of-sample performance is paramount (e.g., multi-site deployment, transportability).
Discrimination-Emphasis (AUROC 0.45, MCC 0.35, LOOIC 0.10, BIC 0.10). For clinical contexts
where case—control separation matters most (screening/triage). AUROC captures threshold-free
separation; MCC reflects performance at an operating point. LOOIC/BIC remain as safeguards.
BIC-Omitted (BIC = 0; remaining weights renormalized). Sensitivity analysis to confirm parsimony
penalties are not driving results, recognizing that LOOIC already disfavours gratuitous complexity.
AUROC-Emphasis (AUROC 0.35, LOOIC 0.30, MCC 0.25, BIC 0.10. Mirrors the common
AUC-first evaluation to show that conclusions are robust even when discrimination is given extra
prominence.

Average Rank (all schemes). For presentation, we also report the unweighted mean of the six

scheme-specific ranks for each model. This derived “Average Rank” was not resampled in

inferential procedures.

Ties were broken by favoring lower PSIS-LOOIC/BIC, then higher AUROC/MCC, then fewer

predictors. An optional collinearity penalty was prespecified with a hard flag for VIF > 10); when applied,

penalized ranks were obtained by adding this penalty to the equal/weighted rank. Ties favoured lower

LOOIC/BIC, then higher AUROC/MCC, and then fewer predictors. An optional collinearity penalty was

prespecified as max (0, max VIF —5) x 0.25 (with an optional hard flag for VIF > 10); when applied, penalized

ranks were obtained by adding this penalty to the equal/weighted Rank.
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Scheme Robustness of comparison of model ranks
To assess whether model comparisons were robust to the weighting of evaluation metrics, we prespecified the
six ranking schemes above and used the best-ranked z-score model [MODEL C: TLC & FEV: (GLI), DLNO

(GAMLSS)] as the baseline. For each comparator and for each scheme we computed the rank difference

Arank = rankcomparator, scheme — I'a'nkMODEL C, scheme

So that positive values indicate the comparator ranks worse than MODEL C under that scheme. We then

calculated, for each comparator, the mean A rank across the six schemes.

To reflect sensitivity to weighting choice (not patient-level sampling variability), we obtained 95%
bootstrap intervals by resampling the six schemes with replacement (n =6, B =10,000) and recomputing the
across-scheme mean A rank for each bootstrap replicate. We did not resample or use the derived “Average
Rank” column in this procedure; intervals were based on the six scheme-specific differences. Intervals
entirely > 0 indicate the comparator is consistently ranked worse than MODEL C across the prespecified

schemes. Results for the top 10 of 34 models are displayed in Figure 3 of the main article.

Decision Curve Analysis

To evaluate the clinical utility of the emphysema classification models, we conducted decision curve analysis
(DCA) using out-of-fold predictions from repeated cross-validation. Net benefit was plotted against threshold
probability values ranging from 0 to 0.25 (Figure S7). Each model's net benefit was compared against two
reference strategies: Treat All (light grey line): assumes all patients are treated; Treat None (dashed black

line): assumes no patient is treated. The net benefit was computed using the standard DCA formula:

Where TP = true positives, FP = false positives, pt = threshold probability, and » = total number of patients.
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Laptop Specifications Used for Code Execution
The central processing unit (CPU) used is the Intel Core 19-12950HX, featuring 16 cores (8 performance and
eight efficiency) and 24 threads, with a base clock of 2.3 GHz that boosts up to 5 GHz. The CPU is paired

with 128 GB of RAM (running at 1795.6 MHz DRAM frequency). FEV;

Package function mapping

Part 1: Workflow Summary (General Readership)

All analyses were conducted in R (version 4.4.2), using a combination of base functions and specialized

packages. The process followed a structured pipeline:

1. Data Handling & Preprocessing

SPSS files were imported and converted into tidy R data frames. Variables were cleaned, reshaped, recoded,
and standardized across studies. Factor levels were harmonized; labelled vectors were coerced to base types.

Model outputs were tidied into consistent formats for analysis and reporting. Visualization tools were used to
generate calibration plots, biplots, and publication-quality figures. Tables and figures were exported to Word
and Excel formats. Parallelization was used to speed up bootstraps and cross-validations, with runtime and

reproducibility tightly controlled.

2. Modeling, Evaluation & Inference

e LASSO regression was used to select lung function predictors most associated with emphysema.

e Logistic regression models—both frequentist and Bayesian—were fit with and without study-level
random effects.

e Model selection was guided by AIC, BIC, and LOOIC, depending on the framework.

e C(lassification performance was evaluated using AUROC, MCC, and metrics like sensitivity,
specificity, and F1-score.

e Bootstrapping and stratified cross-validation were applied to assess stability and uncertainty.

e PCA and hierarchical partitioning were used to reduce dimensionality and understand variable

importance.
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e (Collinearity was checked using variance inflation factors (VIFs), and calibration diagnostics were used

to assess model fit.

All R packages used are presented in Tables S2-S3.
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Table S1. Data quality summary by study

Moinard & d
Dal Negro et Diener et al. omar van der

al. (2024)° (2021)* Guénard Lee et al.

(1990)> (2009)}

Data Quality Item

1. Both COPD (Disease = 1) and non-COPD

subjects (Disease = 0) were provided in the v v v v

study
2. Pack Years Included v v v v
3. Percent emphysema by CT Volume v X X v
4. Smoking history included X v X X
5. mMRC dyspnoea scores included v X X X
6. Sex of subject included v N N v
7. Height of subjects included v v v v
8. Weight of subjects included V4 v X X
- et oy s 290Gy e X100 a0y /920
Total number of checkmarks (out of 9 possible) 7 6 5 6

Failing quality control means that one of the following was found in a case: Breath-hold time was not between
8.0-12.0 s; VA/TLC ratio > 1.0; FEV1/FVC ratio > 1.0; RV/TLC ratio < 0.20; or inspired volume to FVC ratio
< 0.85. Each case that failed quality control was eventually removed before statistical analyses.

*The low percentage reflects the study’s 5-s breath-hold. We excluded that study to harmonize breath-hold
time across studies; without that criterion, 90% of cases in that study met quality control requirements.

Dal Negro et al. (2024)° used the Hyp’Air Compact device (Medisoft®, Belgium) to measure DLNO and
DLCO via electrochemical NO and CO sensors. In contrast, Moinard & Guénard (1990)? and van der Lee et
al. (2009)° employed chemiluminescence-based analyzers (Thermo Electron Corporation, MA, USA; and
CLD 77AM, Eco Physics, Zurich, Switzerland, respectively) for DLNO assessment. Diener et al. (2021)*
utilized the Jaeger MasterScreen PFT Pro (CareFusion, Hochberg, Germany), which also used an
electrochemical NO and CO sensors for DLNO / DLCO measurements.



Table S2. Package—Function Mapping — Data Handling and preprocessing

Functionality Package(s) Notes
Data import (Excel) readxl Import .xIsx; used for all figures.
Data import (SPSS) haven Import .sav files.
lyr, ti trs, forcat t i h
Data wrangling dplyr, tidyr, vetrs, forcats, Standardize, reshape, encode, and

Visualization (labels)

Visualization (rich text)

Visualization (core)

Figure assembly/layout

Graphics device / export

Model tidying

Table export

Reproducibility &
tooling

Collinearity diagnostics

stringr

ggrepel

ggtext

ggplot2

cowplot, grid

ragg

broom

officer, flextable, openxlsx

tictoc, conflicted, parallelly

car

clean variables.

Overlap-avoiding text/markers (e.g.,
asterisks near endpoints).

HTML/Markdown text in plots
(legend/annotations).

Publication-ready plots.

Compose multi-panel figures; layout
control; grid::unit() for sizing.

High-resolution TIFF/PNG via
agg tiff(); improved anti-aliasing.

Convert model objects into tidy data
frames.

Generate Word and Excel tables.

Runtime tracking, namespace
resolution, parallel tools.

Variance inflation factor (VIF)
calculations.

17
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Table S3. Package—Function Mapping — Modelling, Evaluation, Inference

Functionality

Package(s)

Notes

LASSO regression

Bayesian modelling

Frequentist modelling
Model tidying (GLMs/GLMMs)

Information criteria

Discrimination & ROC

Cross-validation

Bootstrapping & resampling

PCA

Hierarchical partitioning
Mixed-effects & GLMs

Model comparison & pseudo-R?
Rank tests & post-hoc

Multiple testing

Decision-curve analysis

glmnet

brms, rstan, cmdstanr
stats::glm, Ime4::glmer
broom, broom.mixed

loo

pROC

custom K-fold; future, future.apply

base R (sample, quantile); optional: future

stats::prcomp

MuMIn, glmm.hp

Ime4, stats

pscl

stats::friedman.test, PMCMRplus

stats::p.adjust(method = 'BH')

ggplot2, dplyr (or mda / dcurves)

Penalized variable selection.
Logistic models; Stan
backend; robust PSIS-LOO.
GLMs and mixed-effects
(study random intercept when
used).

Tidy summaries for reporting.
PSIS-LOOIC (—2xelpd),
Pareto-k diagnostics, model
comparison.

AUROC, DeLong Cls,
Youden-J threshold.
Stratified K-fold CV;
thresholds learned in training;
parallel execution.
Paired/bootstrap resampling
incl. mean Arank across
schemes (B=10,000).
Dimensionality reduction;
variance explained.

Partition McFadden’s R? into
unique/joint contributions.

Fit fixed/random-effects
logistic models.

McFadden’s R? and related
indices.

Friedman test; Conover
post-hoc comparisons.
Benjamini—-Hochberg FDR
control.

Net benefit vs threshold using
OOF predictions; 95%
bootstrap Cls.
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Table S4. Estimating model superiority based on BIC differences: interpreting the

probability that the lower-BIC model is better

BIC Bayes
difference Factor
between two (Posterior

models QOdds)

Probability that | Evidence that the
the model with
the lower BIC is

better

model with the
lower BIC is
better
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence
Weak Evidence

Bayes Probability that
BIC difference Factor the model with Evidence that the
between two | (Posterior | the lower BIC is model with the
models Odds) better lower BIC is better
5.1 12.81 92.8% Positive Evidence
52 13.46 93.1% Positive Evidence
SLE 14.15 93.4% Positive Evidence
5.4 14.88 93.7% | Positive Evidence
85 15.64 94.0% Positive Evidence
5.6 16.44 94.3% Positive Evidence
T 17.29 94.5% Positive Evidence
5.8 18.17 94.8% Positive Evidence

Positive Evidence

k Positive Evidence
25 3.49 T7.7% Positive Evidence
26 3.67 78.6% Positive Evidence
2.7 3.86 79.4% Positive Evidence
2.8 4.06 80.2% Positive Evidence
29 4.26 81.0% Positive Evidence
3 4.48 81.8% Positive Evidence
3.1 4.71 82.5%  Positive Evidence
3.2 495 83.2% Positive Evidence
3.3 9.21 83.9% Positive Evidence
3.4 5.47 84.6% Positive Evidence
D) S5 85.2% Positive Evidence
3.6 6.05 85.8% Positive Evidence
3.7 6.36 86.4% Positive Evidence
3.8 6.69 87.0% Positive Evidence
3.9 7.03 87.5% Positive Evidence
4 7.39 88.1% Positive Evidence
4.1 7.77 88.6% Positive Evidence
4.2 8.17 89.1% Positive Evidence
4.3 8.58 89.6% Positive Evidence
4.4 9.03 90.0% Positive Evidence
4.5 9.49 90.5% Positive Evidence
4.6 9.97 90.9% Positive Evidence
4.7 10.49 91.3% Positive Evidence
4.8 11.02 91.7% Positive Evidence
4.9 11.59 92.1% Positive Evidence
&) 12.18 92.4% Positive Evidence

Bayes Factor (Posterior Odds): The posterior odds are calculated using the BIC differences. It quantifies how much more likely one model is better
compared to another. The Bayes factor can be estimated from the BIC difference by the formula: Bayes Factor = e*BIC*2, Here, the ABIC is the difference
in BIC scores between the two models. This exponentiation reflects how changes in BIC scores can exponentially affect the likelihood ratio between the
two models. The probability that the model with lower BIC is better can be derived from the Bayes Factor. If the Bayes factor is B, the probability P that
the model with the lower BIC is better — after considering the observed data — can be estimated as: P = § + (1+). This formula assumes equal prior
probabilities for the two models. Evidence Strength (e.g., weak, positive, strong, solid) is based on thresholds of the Bayes factor or the BIC differences.
Commonly, larger Bayes factors indicate stronger evidence for one model over another. Specific thresholds for these categories can vary, but, this table is
based on the suggestions by Raftery (1995)?° but without rounding. The table stops at a ABIC of 10.1 as the evidence remains “Solid” at any point larger

5.9

19.11

95.0%

Positive Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Strong Evidence
Solid Evidence
Solid Evidence
Solid Evidence
Solid Evidence
Solid Evidence
Solid Evidence
Solid Evidence
Solid Evidence
Solid Evidence

than 9.2. The differences between models using the Leave-One-Out Information Criterion (LOOIC) are interpreted the same way.
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Table S5. Comparison of Bayesian Information Criterion (BIC) and Leave-One-
Out Information Criterion (LOOIC)

Criterion BIC LOOIC

Definition The BIC examines model The LOOIC is used to evaluate predictive
performance. The BIC is a criterion | accuracy with a focus on model
for model selection that balances generalizability. The LOOIC is a cross-
goodness-of-fit and model validation-based metric that assesses model
complexity. predictive accuracy.

Focus Balancing model fit and complexity | Model generalizability and predictive
(parsimony). accuracy.

Interpretation Lower BIC values indicate a better Lower LOOIC values suggest better
trade-off between model fit and predictive accuracy on unseen data.
complexity.

Complexity Penalizes models more heavily for Penalizes overfitting implicitly by estimating

Penalty added parameters to avoid prediction errors via cross-validation.
overfitting.

Underlying Assumes the data are from a Relies on fewer distributional assumptions

Assumption parametric model (often normal and uses resampling.
distribution).

Use Case Suitable for comparing nested Ideal for complex models, including
models or simpler parametric hierarchical or non-nested models.
models.

Data Requires a well-defined likelihood Can work with a broader range of model

Requirements function. types, including Bayesian models.

Computational | Relatively low, as it requires only the | Computationally intensive due to resampling

Cost model likelihood and parameter or approximation techniques.
count.

Strengths Simple, fast, and effective for Robust and adaptable, particularly for
straightforward parametric models. evaluating predictive performance.

Limitations May perform poorly with complex or | Computationally expensive and sensitive to
hierarchical models. the choice of approximation methods.

Table created from the works of Vehtari ez al. (2017) '8, Schwarz et al. (1978)*° & Burnham et al. (2004) 3!
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Table S6. Comparison principal component analysis and hierarchical partitioning

Principal Component Analysis

Hierarchical Partitioning

(z-scores; typical VIFs ~1.4) for
regression; identify key variance patterns.

Definition A dimensionality-reduction technique that A method to quantify each predictor’s
transforms correlated variables into relative importance by partitioning
uncorrelated principal components. model R? into unique and shared

contributions (via R? partitioning).

Focus Variance structure within predictors (e.g.,  Variance in the outcome (emphysema =
z-scores for TLC, FEV1, DLNOqs; disease) explained by each predictor,
GAMLSS), reducing dimensionality for accounting for collinearity and shared
modelling. effects.

Interpretation PC1, PC2, PC3, and PC4 are orthogonal McFadden’s R? = 0.663. Individual,
linear combinations of the z-score standalone contributions (% of total)
predictors. In our data, PC1 loaded was ~78% for FEV z-scores, ~48% for
strongly on DLNO s and explained ~52%  DLNOios (GAMLSS) z-scores, and
of predictor variance; PC2 represents ~13% for TLC z-scores.
hyperinflation (~17%), and PC3
represents airway obstruction (~12%), and
PC4 was non-significant).

Complexity Penalty None directly; adding PCs to regression Adjusts via R? partitioning. High
increases model complexity (e.g., collinearity can complicate
BIC/AIC trade-offs). interpretation; in our data VIFs were

modest (~1.09 to 1.62) for the three-
predictor model of z-scores for TLC,
FEV., DLNO ). However, VIFs
ranged from 1.12 to 4.44 in the four-
predictor model of z-scores for TLC,
FEVl, DLNOms, and DLCOlos,

Underlying Assumption Linear relationships among predictors; Predictors contribute to the outcome in
variance 1s informative. Outcome is not a linear fashion; a fitted model (e.g.,
used to derive PCs. logistic regression) is valid for R?

partitioning.

Use Case Simplify multicollinear predictors Assess predictor importance for disease,

especially with collinear predictors;
prioritize z-scores of TLC, FEV1, and
DLNO for contributions.

Data Requirements

Numeric continuous predictors (z-scores);
no missing values after listwise deletion (n
=408).

Numeric predictors and a binary
outcome (disease: yes/no); complete
cases; fitted logistic regression.

Computational Cost

Low to moderate; matrix decomposition
scales with number of predictors.

Moderate; depends on model fitting and
number of R? partitions; scales with
predictors and sample size (n = 408).

assumes linear relations; does not model
the outcome directly.

Strengths Reduces dimensionality; handles Quantifies unique and shared variance;
collinearity; identifies major variance adjusts for collinearity; provides clear
patterns. predictor importance (e.g., strong effect

for FEV)).

Limitations Less interpretable than original predictors;  Sensitive to model specification;

requires a valid outcome model;
interpretations can be affected by shared
variance.




Table S7. Definitions and alternatives names for classification metrics
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1. Kappa Statistic («): The Kappa statistic measures the agreement between two raters or classification methods,
accounting for the agreement that could occur by chance. It ranges from -1 (no agreement) to 1 (perfect
agreement), with 0 indicating chance-level agreement.

2. F1 Score: The F1 Score is the harmonic mean of precision and recall, balancing the trade-off between false
positives and false negatives. It is commonly used for imbalanced datasets.

3. Accuracy: Accuracy is the proportion of correctly classified observations (both true positives and true
negatives) out of all observations. It is sensitive to class imbalance.

4. Balanced Accuracy: Balanced accuracy is the average of sensitivity and specificity, providing a performance
measure that accounts for class imbalance. It is particularly useful when the dataset is skewed.

5. Sensitivity (Recall, True Positive Rate, TPR): Sensitivity measures the proportion of actual positives
correctly identified as positive. Also called recall or the true positive rate (TPR).

6. Specificity (True Negative Rate, TNR): Specificity is the proportion of actual negatives correctly identified
as negative. It is also known as the true negative rate (TNR).

7. Positive Predictive Value (PPV, Precision): PPV indicates the proportion of positive test results that are true
positives (TP). Also called precision, it assesses how reliable positive classifications are.

8. Negative Predictive Value (NPV): NPV measures the proportion of negative test results that are true
negatives (TN), indicating the reliability of negative classifications.

9. False Omission Rate (FOR): FOR is the proportion of false negatives (FN) among all negative predictions,
indicating how often a negative prediction is incorrect.

10. False Positive Rate (FPR, Fall-out): FPR is the proportion of false positives (FP) among all actual
negatives. It is also called the fall-out rate and represents the chance of a false alarm.

11. False Negative Rate (FNR, Miss Rate): FNR measures the proportion of actual positives that are incorrectly
classified as negatives. It is also known as the miss rate.

12. False Discovery Rate (FDR): FDR is the proportion of false positives (FP) among all positive predictions,
indicating how often a positive prediction is incorrect.

13. Positive Likelihood Ratio (+LR): +LR quantifies how much more likely a positive test result is for someone
with the condition compared to someone without the condition.

14. Negative Likelihood Ratio (—LR): —LR quantifies how much less likely a negative test result is for someone
with the condition compared to someone without the condition.

15. Matthews Correlation Coefficient (MCC): MCC evaluates the correlation between observed and predicted
classifications, considering all confusion matrix elements. It ranges from -1 (inverse prediction) to 1 (perfect
prediction).

16. Diagnostic Odds Ratio (DOR): DOR combines sensitivity and specificity to describe the odds of a positive
test result in those with the condition versus those without it. A higher value indicates better test performance.




Table S8. Formulas for key classification metrics
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1. Kappa Statistic (x):

9. False Omission Rate (FOR):

— Po — Pe
1-p FN
¢ FOR = ————
FN +TN
Where:
° p, = % (Observed agreement)
°* P = (TP+FP)(%ﬁi%ﬁéﬁi}%@)(TNJrFP) (Expected agreement)
2. F1 Score: 10. False Positive Rate (FPR):
Fl_o. Il:’re(flsilon . RRecali1 — Fp
recision + Recal = FPITN TN
Where:
e Precision = n};iPFP
e Recall = % (Sensitivity)
3. Accuracy and Discordance:
Accuracy — TP+TN 11. False Negative Rate (FNR):
Y= TP+ TN+ FP+ FN .
FNR= ——
Discordance: = 1 — Accuracy FN+TP
4. Balanced Accuracy: .
12. False Discovery Rate (FDR):
Balanced Accuracy — Sensitivity + Specificity 7P
2 FDR= ———
FP +TP
5. Sensitivity (Recall): 13. Positive Likelihood Ratio (+LR):
P Sensitivity
itivity = ——— IR=——_———
Sensitivity TP + FN + 1 Specificity
6. Specificity: 14. Negative Likelihood Ratio (-LR):
1 — Sensitivit;
. TN IR = 1 7 oensivity
Specificity = TN | FP Specificity

7. Positive Predictive Value (PPV):

15. Matthews Correlation Coefficient (MCC):

PPV:L MCC = TP.TN — FP-FN
TP + FP /(TP + FP)(TP + FN)(IN + FP)(IN + FN)
8. Negative Predictive Value (NPV): 16. Diagnostic Odds Ratio (DOR):
Sensitivity - Specificity
TN DOR = P e
NPV = — (1 — Sensitivity) - (1 — Specificity)
TN + FN

Alternatively:
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Table S9. Additional definitions and alternatives names for classification metrics

Unique (Independent) contribution: The Unique contribution is the share of model fit (McFadden’s R?)
attributable solely to a predictor after apportioning overlap with the others. It is computed as the average
marginal increase in McFadden’s R? when adding the predictor to every possible subset of the remaining
predictors (Shapley value). By construction it is non-negative. Larger values indicate a stronger independent
effect.

Average share: The part of fit associated with a predictor that is shared with other predictors
(overlap/redundancy) or that arises from mild suppression/synergy. Defined operationally as Average share
= Standalone — Unique. It can be positive (overlap/redundancy) or negative (suppression).

Individual (Standalone) contribution: The McFadden’s R? from a single-predictor model that includes only
that predictor. It reflects explanatory power in isolation, without adjusting for shared effects with other
predictors.

Unique (% of total): The predictor’s Unique share as a percentage of the full model’s McFadden’s R*:
Unique (%) = 100 x (Unique / Total R?). These percentages across predictors should sum to ~100% (up to
rounding) and provide a decomposition-consistent ranking.

Average share (% of total): The Average share as a percentage of the full model’s McFadden’s R%. Average
share (%) = 100 x ((Standalone — Unique) / Total R?). Values may be positive (overlap) or negative
(suppression).

Individual (Standalone) (% of total): The Standalone contribution as a percentage of the full model’s
McFadden’s R?: Standalone (%) = 100 x (Standalone / Total R?). These do not sum to 100% across predictors
(each single-predictor model captures overlapping signal).

Joint (shared) component: The portion of fit not uniquely assignable to any single predictor: Joint = Total
R? — ¥ Unique. A negative Joint indicates mild redundancy/overlap among predictors (the sum of Unique
slightly exceeds the total), which is common and typically small.

Tjur’s R* (Coefficient of Discrimination, D): Mean predicted probability among cases minus mean
predicted probability among controls: D = E[p | y=1] — E[p | y=0]. Tjur’s R? measures how well the model
separates cases from controls in absolute risk space. Threshold-free and easy to interpret: 0 means no
separation; 1 means perfect separation. Sensitive to calibration (shifts that change mean predicted risks will
change D).

Efron’s R?* Fraction of wvariance in the binary outcome explained by predicted probabilities:
R =1-X(y — p)*/ X(y — ¥)* Efron’s R? is a mean-squared-error—based pseudo-R? comparing the model
to a null model that always predicts the prevalence y. Can be negative if the model is worse than the null;
approaches 1 with perfect predictions. Reflects both discrimination and calibration.

Brier Score: Mean squared error between predicted probabilities and the actual outcomes (0 or 1). The
reference is usually a naive model that always predicts the outcome prevalence
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Table S10. BIC and LOOIC values for the 29 models examined.
Isa“Study BIC BIC LOOIC LOOIC

Level Random Rank Rank

Intercept

Needed?
Model C [TLC & FEV: (GLI), DLNO (GAMLSS)] No 164.6 1 149.7 2
Four predictor z-scores No
[TLC & FEV: & KCO (GLI), DLNO (GAMLSS)] 168.5 2 149.8 3
Model B No
[TLC & FEV: & DLCO (GLI), DLNO (GAMLSS)] 169.6 3 150.9 4
Four predictor z-scores No
[TLC & FEVi(GLI), DLNO & DLCO (GAMLSS)] 170.4 4 151.7 6
Three predictor z-scores [TLC & FEV: & DLCO (GLI)] No 170.6 5 155.4 7
Five predictor z-scores [(TLC, FEV: & FEV/FVC & KCO No
(GLI), DLNO (GAMLSS)] 172.1 6 149.1
Model A [TLC & FEV: (GLI), DLCO (GAMLSS)] No 175 7 159.9 8
Three predictor z-scores No
[TLC & FEV: (GLI), DLCO (van der Lee)] 177.4 8 162.4 9
Six predictor z-scores [TLC & FEV: & FEV//FVC & KCO No
(GLI); KNO (van der Lee), DLNO (GAMLSS)] 178.1 9 151.6 5
FEV/FVC z-scores (GLI) No 209.6 10 201.7 10
FEV z-scores (GLI) No 2145 11 206.7 11
RV/TLC z-scores (GLI) Yes 285.9 12 266.1 12
Summed z-scores (DLNO + DLCO, GAMLSS) No 288.8 13 281 13
KNO z-scores (van der Lee) No 292 14 284.1 17
Two predictor z-scores [DLNO (GAMLSS), DLCO (GLI)] No 294.1 15 282.5 14
Two predictor z-scores (DLNO & DLCO, GAMLSS) No 294.7 16 282.9 15
DLNO z-scores (GAMLSS) No 297.7 17 289.9 18
DLCO z-scores (GLI) No 300.2 18 292.3 19
Summed z-scores (DLNO+DLCO, SLR) No 301.1 19 293.2 20
DLCO z-scores (GAMLSS) No 301.9 | 20 294 22
DLCO z-scores (SLR) No 304.1 | 21 296.1 24
Summed z-scores (DLNO+DLCO, van der Lee) No 304.3 22 296.5 25
KCO z-scores (GLI) Yes 305 23 283.8 16
Two predictor z-scores (DLNO, DLCO, SLR) No 305.6 24 293.6 21
Two predictor z-scores (DLNO, DLCO, van der Lee) No 308.3 25 296.5 25
DLCO z-scores (van der Lee) No 309.2 | 26 301.4 27
KCO z-scores (van der Lee) Yes 315.8 27 295.4 23
DLNO z-scores (SLR) Yes 320.1 28 312.1 28
DLNO z-scores (van der Lee) Yes 32221 29 3144 30
FVC z-scores (GLI) Yes 330.4 30 313.8 29
TLC z-scores (GLI) Yes 376 31 356.9 31
VA z-scores (GLI) Yes 413.9 32 395.4 32
VA z-scores (GAMLSS) Yes 4153 33 3954 32
VA z-scores (SLR) No 428.1 34 420.2 34

SLR = Segmented Linear Regression (Zavorsky & Cao 2022) ; GAMLSS = Generalized Additive Models of Location Scale & Shape
(Zavorsky & Cao 2022); GLI = Global Lung Function Initiative Equations; van der Lee = Equations of van der Lee et al., 2007.



Table S11. Principal Component (PC) Analyses Loadings (PCs used in model)

Variable PC1
FEV.: z-scores, GLI equations, [Quanjer et al. 2012] 0.24
FVC z-scores, GLI equations, [Quanjer et al. 2012] 0.18
FEV1/FVC z-scores, GLI equations, [Quanjer et al. 2012] 0.22
TLC z-scores, GLI equations, [Hall et al. 2021] 0.02
RV/TLC z-scores, GLI equations, [Hall et al. 2021] -0.12
DLCO z-scores, SLR, [Zavorsky & Cao 2022] 0.32
DLCO z-scores, GAMLSS, [Zavorsky & Cao 2022] 0.32
DLCO z-scores, GLI equations, [Stanojevic et al. 2017] 0.32
DLCO z-scores, [van der Lee et al. 2007] 0.32
DLNO z-scores, SLR, [Zavorsky & Cao 2022] 0.31
DLNO z-scores, GAMLSS, [Zavorsky & Cao 2022] 0.32
DLNO z-scores, [van der Lee et al. 2007] 0.31
VA z-scores, SLR, [Zavorsky & Cao 2022] 0.06
VA z-scores, GAMLSS, [Zavorsky & Cao 2022] 0.06
VA z-scores, GLI equations, [Stanojevic et al. 2017] 0.17
KCO z-scores, GLI equations, [Stanojevic et al. 2017] 0.21
KNO z-scores, [van der Lee et al. 2007] 0.26

PC2

0.04

—0.02

0.06

—0.49

—0.30

0.04

0.05

0.04

0.02

—0.13

—0.10

—0.14

—0.35

—0.34

—0.44

0.35

0.23

PC3

0.43

0.42

0.27

—0.16

—0.48

—0.14

—0.12

—0.15

—0.13

—0.10

—0.11

—0.11

0.29

0.30

—0.02

—0.14

—0.11

PC4

0.18

0.36

—0.06

0.26

—0.17

0.01

0.00

—0.03

—0.02

0.03

0.01

0.01

—0.52

—0.52

0.29

—0.24

—0.24
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Principal Component 1 (PC1) represents alveolar-capillary gas transfer (DLNO, DLCO). Principal
Component 2 (PC2) represents hyperinflation (TLC, VA). Principal Component 3 (PC3) represents airway
obstruction (FEV1, FVC) and air trapping (RV/TLC). Principal Component 4 (PC4)



Table S12. Logistic Regression Coefficients (Principal Component Analyses
Model with PC1-PCA4)

Standard Odds Ratio

Estimate Statistic -value
Error p

Intercept —2.47 0.26 -9.46 0.084 <0.00001
PCl1 —0.89 0.10 —8.68 0.411 <0.00001
PC2 —0.63 0.13 —4.86 0.532 <0.00001
PC3 —0.85 0.15 —5.58 0.427 <0.00001
PC4 0.09 0.17 0.54 1.094 0.587

The baseline odds of COPD when all PCs are zero (mean values) are 0.084, or about 8% of the odds
of being a control, reflecting a strong baseline tendency toward the control group. A one-standard-
deviation increase in PC1 (better gas alveolar-capillary transfer reduces the odds of COPD by
approximately 59% (1 — 0.411). A one-standard-deviation reduction in PC2 (reduced hyperinflation
and air trapping) reduces the odds of COPD by about 47% (1 — 0.532). A one-standard-deviation
increase in PC3 (increases in FEV1, FVC spirometry and decreases in RV/TLC) reduces the odds of
COPD by about 57% (1 — 0.427). A one-unit increase in PC4 (higher VA variability, FVC) increases
the odds of COPD by about 9% (1.094 — 1), but this is not significant, indicating no reliable effect.

27
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Table S13. Logistic Regression Coefficients (Reduced PCA Model with PC1-PC3)

] Standard e Odds ratio
Estimate Statistic
Error
Intercept -2.45 0.26 -9.50 0.086 <0.00001
PC1 —0.89 0.10 -8.70 0.411 <0.00001
PC2 —0.63 0.13 -4.86 0.532 <0.00001
PC3 —0.84 0.15 -5.59 0.432 <0.00001

The baseline odds of COPD when all PCs are zero (mean values) are 0.064, or about 8% of the odds of
being a control, reflecting a strong baseline tendency toward the control group. A one-standard-
deviation increase in PCI1 (better alveolar-capillary gas transfer) reduces the odds of COPD by
approximately 59% (1 —0.411). A one-standard-deviation reduction in PC2 (reduced hyperinflation and
air trapping) reduces the odds of COPD by about 47% (1 — 0.532). A one-standard-deviation increase
in PC3 (increases in FEV1, FVC spirometry and decreases in RV/TLC) reduces the odds of COPD by
about 57% (1 —0.432).



Table S14. Comparison of Model fit

Model AIC BIC
Full Model (PC1-PC4) 170.3 190.4
Reduced Model (PC1-PC3) 168.6 184.6

The odds ratios for PC1, PC2, and PC3 are nearly identical to those of the full
model, confirming that the exclusion of PC4 does not affect the significant
predictors. The slight difference in PC3 (0.427 vs. 0.432) is negligible. The reduced
model maintains the same protective effects: better gas transfer (PCI1), less
hyperinflation (PC2), and improved spirometry (PC3) significantly reduce COPD
odds

29
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Table S15. Hierarchical partitioning results for the three main predictors of
emphysema: (FEV1 z-scores, TLC z-scores and DLNO1os z-scores)

Unique contribution Average Share Individual Variance
(R?) [95%CI] (R?) [95%CI] (Standalone) Inflation
Contribution Factor

(R?) [95% CI]

FEV: Z-scores, GLI equations, 0.3540.272,0.451] 0.161[0.120,0.204] 0.515[0.409, 0.637] 1.58
[Quanjer et al. 2012]
DLNO¢s Z-scores, GAMLSS,
[Zavorsky & Cao 2022] 0.213 [0.154, 0.287]
TLC Z-scores, GLI equations, 0.111[0.061, 0.179] —0.026 [-0.063, 0.015] 0.084 [0.028, 0.166] 1.09
[Hall et al. 2021]

0.103 [0.059, 0.148] 0.316 [0.228, 0.417] 1.62

Unique Contribution Average Share Individual
(% of total) (% of total) (Standalone)

[95% CI] [95% CI] Contribution
(% of total)
[95% CI]
77.6% [66.0, 86.8]

53.4%[43.2,62.5]  24.2%[19.0,28.5]

FEV: Z-scores, GLI equations,
[Quanjer et al. 2012]

DLNO s Z-scores, GAMLSS, 32.1%[23.7,41.2] 15.5%[9.2, 21.0] 47.6% [35.5, 59.2]
[Zavorsky & Cao 2022]
TLC Z-scores, GLI equations, 16.7% [9.0, 26.6] —4.0% [-9.4, 2.2] 12.7% [4.2, 24.6]

[Hall et al. 2021]

Joint R?
[95%CI] % of Total [95%CI]

Joint (shared) contribution
ariance-like Summaries

Total McFadden R*[95% CI] 0.663 [0.577, 0.774]

Tjur (R?) [95% CI] (coefficient of  0.691 [0.618, 0.760]

—0.015 [-0.025,-0.005] —2.2% [-3.6, —0.7]

rSSNP N/A
discrimination)
Efron R? [95% CI] 0.679 [0.574, 0.773] N/A
Brier Score [95% CI] 0.051 [0.035, 0.069] N/A

95% Cls are from 20,000 bootstrap resamples. The Independent contribution (Shapley) is the average marginal
gain in McFadden’s R? when a predictor is added across all possible subsets; it is the portion of fit uniquely
attributable to that predictor after apportioning overlap. The Joint (shared) component is the residual fit not
uniquely assignable to any single predictor; a negative value indicates mild redundancy/suppression among
predictors (the sum of unique parts slightly exceeds the total, so the joint term is negative). In this table, the
Unique Contributions sum to 0.354 + 0.213 + 0.111= 0.678, while the total McFadden’s R?is 0.663, yielding
Joint =—-0.015 (= —2.3% of total). Redundancy is therefore small. The ranking by unique importance is FEV:
> DLNO1ws > TLC, and all three also show meaningful standalone contributions (0.515, 0.316, 0.084),
supporting inclusion of all three predictors. (Minor differences reflect rounding.) Specifically, McFadden’s
R2=0.663 indicates that the 3-predictor DLNO logistic model reduces deviance (or equivalently improves log-
likelihood) by ~66% relative to an intercept-only (null) model. Note that McFadden’s R? is a relative fit
measure, not “variance explained” (variance isn’t defined the same way for a binary outcome).
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Table S16. Hierarchical partitioning results when adding DLCO10s z-scores (GLI) to
the 3-predictor DLNO1os (GAMLSS) model of emphysema

Unique contribution Average Share Individual Variance
(R?) [95%CI] (R?) [95%CI] (Standalone) Inflation
Contribution Factor

(R?) [95% CI]

FEV. Z-scores, GLI equations, 0.286 [0.211, 0.377] 0.22910.174, 0.288] 0.515[0.409, 0.637] 1.58
[Quanjer et al. 2012]

DLNOj s Z-scores, GAMLSS, 0.122 [0.087, 0.170] 0.19410.133, 0.260] 0.316[0.228, 0.417] 4.44
[Zavorsky & Cao 2022]

TLC Z-scores, GLI equations, 0.113[0.062, 0.183] —0.029 [-0.071, 0.018] 0.084 [0.028, 0.166] 1.12

[Hall et al. 2021]

DLCOjs Z-scores, GLI, 0.103 [0.071, 0.147] 0.207 [0.148,0.271]  0.310[0.222, 0.411] 3.93
[Stanojevic et al. 2017]

Unique Contribution Average Share Individual
(% of total) (% of total) (Standalone)

[95% CI] [95%CI] Contribution
(% of total)
[95% CI]
77.4% [66.0, 86.8]

42.9% [32.9, 52.4] 34.4% [27.6, 39.8]

FEV: Z-scores, GLI equations,
[Quanjer et al. 2012]

DLNO s Z-scores, GAMLSS, 18.3%[13.3, 24.1] 29.2% [20.6, 36.5] 47.5% [35.5, 59.2]
[Zavorsky & Cao 2022]

TLC Z-scores, GLI equations, 17.0% [9.1, 26.9] —4.3% [-10.5, 2.6] 12.7% [4.2, 24.6]
[Hall et al. 2021]

DLCO1¢s Z-scores, GLI, 15.5% [10.7,21.3] 31.1% [22.9, 38.2] 46.5% [34.1, 58.4]

[Stanojevic et al. 2017]

Joint R?
[95%CT] % of Total [95%CI]

Joint (shared) contribution
ariance-like Summaries

Total McFadden R*[95% CI] 0.666 [0.582, 0.778]

Tjur (R?) [95% CI] (coefficient of ~ 0.704 [0.632, 0.772]

0.042 [0.022, 0.064] 6.3%[3.3, 9.0]

SN N/A
discrimination)
Efron R? [95% CI] 0.687 [0.581, 0.780] N/A
Brier Score [95% CI] 0.052 [0.035, 0.070] N/A

95% Cls are from 20,000 bootstrap resamples. The Independent contribution (Shapley) is the average marginal
gain in McFadden’s R? when a predictor is added across all possible subsets; it represents the portion of fit
uniquely attributable to that predictor after apportioning overlap. The Joint (shared) component is the residual
fit not uniquely assignable to any single predictor; a positive value indicates shared information/synergy
among predictors (part of the fit is common across predictors). In this table, the Unique Contributions sum to
0.286 + 0.122 + 0.113 + 0.103 = 0.624 while the total McFadden’s R? 0.666, yielding Joint = 0.042 (< 6.3%
of total). This implies modest shared structure and limited redundancy. The ranking by unique importance is
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FEV: > DLNO1os > TLC > DLCOno0s, and all four also show meaningful standalone contributions (0.515,
0.316, 0.084, 0.310), supporting inclusion of all predictors. (Minor differences reflect rounding.) Specifically,
McFadden’s R?=0.666 indicates the 4-predictor logistic model reduces deviance (i.e., improves log-
likelihood) by ~67% relative to a null model; note McFadden’s R?is a relative fit index—not variance
explained for a binary outcome. VIFs < 4.44 suggest no severe multicollinearity.

Comparison with Table S14 (3-predictor model): In Table S15, total McFadden’s R? changes only slightly
(0.666) compared to Table S14 (vs 0.663); trivial difference within CIs). Discrimination metrics improve
modestly: Tjur’s R? 0.704 vs 0.691 and Efron’s R? 0.687 vs 0.679; the Brier score is essentially unchanged
(0.052 vs 0.051). Adding DLCOj¢s contributes small, but unique information (0.103=15.5% of total) and
increases the shared (Joint) fit from —0.015 (= —2.2%) to + 0.042 (= 6.3%), indicating overlap/synergy with
the other predictors rather than harmful redundancy. VIFs up to 4.44 suggest moderate, but not severe,
collinearity (notably between DLNO1¢s and DLCOys).

Although z-scores for DLNOjos (GAMLSS) and DLCO 105 (GLI) were strongly correlated (pairwise R? =0.73),
VIFs were <5 (DLNOjos = 4.44; DLCO10s = 3.93), indicating moderate but not severe multicollinearity.
Coefficient SEs are inflated (~2x), but prediction remained stable; hierarchical partitioning showed DLCO1s
adds both unique (AR? = 0.103) and shared information.



Table S17. Model Comparison (B-A)

33

Metric

Model B (4-predictors)

(FEV| z-scores (GLI) +
TLC z-scores (GLI) +

DLNO; s z-scores

[GAMLSS] + DLCOs z-
scores [GLI]) [95% CI]

Model A (3-predictors)

(FEViz-scores (GLI) +
TLC z-scores (GLI) +
DLCOs z-scores [GLI])

[95% CI]

A (B - A) [95% CI]

Different?

MCC
Kappa
Discordance
F1 score
FOR
Accuracy
Balanced accuracy
Sensitivity
Specificity
PPV

NPV

FPR

FNR

FDR

+LR

-LR

DOR

0.770 [0.717, 0.893]
0.762 [0.699, 0.893]
0.086 [0.034, 0.110]
0.817 [0.768, 0.915]
0.023 [0.003, 0.043]
0.914 [0.890, 0.966]
0.915 [0.892, 0.957]

0.918 [0.841, 0.987]
0.913 [0.875, 0.981]

0.736 [0.651, 0.924]
0.977 [0.957, 0.997]
0.087 [0.019, 0.125]
0.082 [0.013, 0.159]
0.264 [0.076, 0.349]
10.6 [7.6, 47.0]
0.1[0.0,0.2]

117.4[77.1,767.8]

0.800 [0.698, 0.892]
0.799 [0.677, 0.892]
0.069 [0.034, 0.123]
0.843 [0.752, 0.915]
0.032 [0.007, 0.049]
0.931 [0.877, 0.966]
0.913 [0.883, 0.951]

0.882[0.819, 0.973]
0.944 [0.861, 0.984]

0.806 [0.631, 0.932]
0.968 [0.951, 0.993]
0.056 [0.016, 0.139]
0.118 [0.027, 0.181]
0.194 [0.068, 0.369]
15.8 [6.8, 52.7]
0.1[0.0,0.2]

127.1[67.8, 571.3]

-0.031 [-0.073, 0.086]

-0.037 [-0.088, 0.099]

0.017 [-0.042, 0.039]

—0.026 [-0.062, 0.072]
—0.009 [-0.026, 0.006]

—0.017 [-0.039, 0.042]

0.002 [-0.006, 0.032]

0.035[-0.027, 0.102]

~0.031 [-0.073, 0.057]

—0.071 [-0.168, 0.121]

0.009 [-0.006, 0.026]

0.031 [-0.057, 0.073]

—0.035 [-0.102, 0.027]

0.071 [-0.121, 0.168]
~5.3[-25.3, 15.9]
0.0 [-0.1, 0.0]

9.7 [-142.2, 404.4]

No

No

No

No

Both models were fit as simple logistic regressions because the “Study” random intercept was not retained (Model A: AICGLM =
148.6 vs AICGLmm=150.6; Model B: 149.5 vs 151.54; in both cases 1> = 0 and adding the random intercept worsened AIC by ~2).
Operating thresholds were chosen by optimal Youden’s J on model-specific predictions (Model A: J-optimal p = 0.276; Model B: p =
0.123) and re-optimized within each bootstrap draw. CIs come from 10,000 subject-level bootstrap resamples; a difference is called
“Different?” only when the 95% CI for A(B—A) excludes 0. No metric showed a statistically significant difference between models
(all A(B—A) 95% ClIs overlapped 0). Point estimates suggest that adding DLNOos (Model B) trades a small increase in sensitivity (A
~+0.047) for a decrease in specificity (A ~—0.043) and PPV (A = —0.105), leaving accuracy (~0.94 vs ~0.914) and balanced accuracy
(~0.915 vs ~0.914) essentially unchanged. MCC (A = —0.047), « (A = —0.055), likelihood ratios (A+LR =—9.5; A—LR ~— 0.05), and
DOR (A =—31.1) were numerically lower with the 4-predictor model, but with wide ClIs that include no effect. Overall, the 4-predictor
model does not provide a statistically demonstrable improvement over the 3-predictor model at the Youden-optimized thresholds.



Table S18. Model comparison (C - A)
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Metric

Model C (3-predictors)

(FEV| z-scores (GLI) +
TLC z-scores (GLI) +
DLNO s z-scores
[GAMLSS]) [95% CI]

Model A (3-predictors)

(FEV,z-scores (GLI) + TLC
z-scores (GLI) + DLCO s z-

scores [GLI]) [95% CI]

A(C - A) [95% CI]

Different?

MCC
Kappa
Discordance
F1 score
FOR
Accuracy
Balanced accuracy
Sensitivity
Specificity
PPV

NPV

FPR

FNR

FDR

+LR

-LR

DOR

0.817 [0.707, 0.892]
0.817 [0.688, 0.891]
0.061 [0.034, 0.118]
0.855 [0.759, 0.915]
0.034 [0.007, 0.046]
0.939 [0.882, 0.966]
0.914 [0.887, 0.953]
0.871 [0.831, 0.976]
0.957 [0.868, 0.982]
0.841 [0.642, 0.930]
0.966 [0.954, 0.993]
0.043 [0.018, 0.132]
0.129 [0.024, 0.169]
0.159 [0.070, 0.358]
20.1[7.2, 49.6]
0.14 0.0, 0.2]

148.5[71.2, 612.2]

0.800 [0.698, 0.892]
0.799 [0.677, 0.892]
0.069 [0.034, 0.123]
0.843 [0.752, 0.915]
0.032 [0.007, 0.049]
0.931[0.877, 0.966]
0.913 [0.883, 0.951]
0.882[0.819, 0.973]
0.944 [0.861, 0.984]
0.806 [0.631, 0.932]
0.968 [0.951, 0.993]
0.056 [0.016, 0.139]
0.118 [0.027, 0.181]
0.194 [0.068, 0.369]
15.8 [6.8, 52.7]
0.13 0.0, 0.2]

127.1 [67.8, 571.3]

0.017 [-0.080, 0.079]
0.018 [-0.095, 0.092]
~0.007 [-0.039, 0.042]
0.013 [-0.068, 0.066]
0.003 [-0.024, 0.014]
0.007 [-0.042, 0.039]
0.000 [-0.016, 0.027]
-0.012 [-0.055, 0.095]
0.012 [-0.074, 0.059]
0.034 [-0.168, 0.130]
~0.003 [-0.014, 0.024]
~0.012 [-0.059, 0.074]
0.012 [-0.095, 0.055]
~0.034 [-0.130, 0.168]
43[-25.2,21.5]
0.01[-0.1,0.1]

21.4 [-184.1, 265.9]

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Both models were analysed with ordinary logistic regression because adding a “Study” random intercept did not improve fit (Model
C: AICgLm =148.6 vs AICgLmm =150.6, T = 0; Model A: AICgLm=154.6 vs AICGLmm =154.9, © = 0.213). Operating thresholds were
chosen by maximizing Youden’s J on each model’s predicted probabilities (Model C: p = 0.276; Model A: p = 0.258) and re-optimized
within every bootstrap replicate. Confidence intervals are percentile 95% Cls from 50,000 paired subject-level bootstrap resamples; a
difference is flagged “Different?”” only when the 95% CI for A(C—A) excludes 0. No metric met this criterion. Point estimates suggest
Model C yields slightly higher specificity (A = +0.012) and PPV (A = +0.034) with a small reduction in sensitivity (A = —0.012);
overall accuracy (A=+0.007) and balanced accuracy (A = 0.000) are essentially unchanged. Differences in MCC (A= +0.017), k (A=
+0.018), likelihood ratios (A +LR =~ +4.25; A—LR = +0.011), and DOR (A = +21.4) are modest with wide CIs that include no effect.
Thus, at Youden-optimized thresholds, Model C does not provide a statistically significant improvement over Model A.
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Table S$S19. Reclassification summary at Youden-optimized thresholds (B - A; C -

A)
B-A C-A
Metric
Estimate Estimate

1 Net Reclassification Improvement (NRI) 0.004 0.020 0.001 0.021

(overall net improvement in reclassification)  [-0.013, 0.064] ' [-0.032, 0.054] '
2 Net proportion of true positives (NRI+) _

reclassified to higher risk o i o] 0035 g ot o 0038
3 Net proportion of true-negatives (NRI-) _

reclassified to lower risk -0 0'920?61058] 0.032 -0 0(,)7;) 102 059] 0.033
4 The fraction of true positives that gets 0.035 0.000

“upped” in risk [Pr (Up | Case)] [0.006 0.102] 0.032 [0.006 0.098] 0.030
5 The undesirable fraction for cases (lowered

risk when they have COPD) 0.000 0.012

[Pr(Down | Case) 0.000,0.030] %% 1000000561  *O1
6 The fraction of true-negatives (controls) that 0.003 0.019

gets “down-rated” [Pr (Down | Control)] [0 00(') 0.065] 0.018 [0 00(') 0.069] 0.020
" controls that gets up-rated [ (Up | 0.034 020 0.006 0.022

Control)] [0.000, 0.072] [0.000, 0.077]
8 Integrated Discrimination Index (IDI). This is 0.014%* 0012 0.013 0.014

the average predicted-risk gap between cases  [0.001, 0.047] ' [-0.010, 0.045] ’

and controls

SE = standard error; CI = confidence interval.
Model A (3-predictors): FEV, z-scores (GLI)+ TLC z-scores (GLI) + DLCOs z-scores [GLI]

Model B (4-predictors): FEV, z-scores (GLI) + TLC z-scores (GLI)+ DLNO s z-scores [GAMLSS] + DLCO s z-
scores [GLI]

Model C (3-predictors): FEV, z-scores (GLI) + TLC z-scores (GLI) + DLNO s z-scores [GAMLSS]

Operating decision thresholds were the Youden-J optima from each model’s ROC curve (Model A: 0.230;
Model B: 0.254; Model C: 0.320), reflecting a single, pre-specified decision rule per model. Calibration
intercept and slope are computed on model-predicted probabilities and do not depend on the decision threshold

Reclassification metrics use the “up”/“down” convention: “Up” = higher predicted risk under the right-hand
model (B or C) vs Model A; “Down” = lower predicted risk. NRI+ = Pr(Up | Case) — Pr(Down | Case); NRI—
= Pr(Down | Control) — Pr(Up | Control); NRI = NRI+ + NRI-. IDI is the change in the average predicted-
risk gap between cases and controls. Estimates and 95% ClIs come from 50,000 paired bootstrap resamples.
Statistical significance is inferred when the 95% CI excludes 0 (asterisk)®. In these data, only the IDI for B
— A showed a small but statistically significant improvement (0.014 [0.001, 0.047]); all other reclassification
components for B — A and C — A had CIs spanning 0.
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Table S20. Reclassification Summary at category-free reclassification (B - A; C -

A)
B-A C-A
Metric
Estimate Estimate
1 Net Reclassification Improvement (NRI) 0.341 0.275 0.290 0.337
(overall net improvement in reclassification)  [-0.123, 0.962] ’ [-0.467, 0.882] '
2 Net proportion of true positives (NRI+) 0.176 0.169 0.200 0.200
reclassified to higher risk [-0.100, 0.562] ' [-0.265, 0.525] )
3 Net proportion of true-negatives (NRI-) 0.164 0.090
reclassified to lower risk [-0.087, 0.457] 0.141 [-0.258, 0.413] 0.167
4 The fraction of true positives that gets * *
o 0.588 0.600
“ d” k [Pr(Up | C 0.084 0.100
upped” in risk [Pr (Up | Case)] [0.450, 0.781] [0.368, 0.763]
5 The undesirable fraction for cases (lowered * *
risk when they have COPD) 0.412 0.084 0.400 0.100
[Pr(Down | Case) [0.219, 0.550] [0.237, 0.632]
6 The fraction of true-negatives (controls) that 0.582% 0.545%
ts “down-rated” [Pr (D Control i 0.070 ' 0.083
gets “down-rated” [Pr (Down | ControD)] [0.456, 0.729] [0.371, 0.706]
7  The undesirable fraction of true-negatives 0.418% 0.455%
(controls) that gets “up-rated” [Pr (Up | ‘ 0.070 ‘ 0.083
Control)] [0.271, 0.544] [0.294, 0.629]
8 Integrated Discrimination Index (IDI). This is 0.014%* 0.013
the average predicted-risk gap between cases ‘ 0.012 ) 0.014
and controls [0.001, 0.046] [-0.010, 0.046]

SE = standard error; CI = confidence interval.

Model A (3-predictors): FEV; z-scores (GLI)+ TLC z-scores (GLI) + DLCO s z-scores [GLI]. The calibration
intercept was 0.00[ —0.44, 0.44], and calibration slope was 1.00 [0.80, 1.21].

Model B (4-predictors): FEV, z-scores (GLI) + TLC z-scores (GLI)+ DLNO¢s z-scores [GAMLSS] + DLCO1 s z-
scores [GLI]. The calibration intercept was 0.00] —0.45, 0.45], and calibration slope was 1.00 [0.79, 1.21].

Model C (3-predictors): FEV; z-scores (GLI) + TLC z-scores (GLI) + DLNOj s z-scores [GAMLSS]. The
calibration intercept was 0.00[ —0.45, 0.45], and calibration slope was 1.00 [0.79, 1.21].

SE = standard error. DLCO1s z-scores (GLI) = fitted DLCO z-scores using GLI references equations for Whites; FEV;
z-scores (GLI) = fitted FEV, z-scores using GLI references equations for Whites; TLC z-scores (GLI) = fitted TLC z-
scores using GLI references equations for Whites; DLNOs z-scores (GAMLSS) = fitted DLNO z-scores using the
GAMLSS reference equations for Whites (Zavorsky & Cao, 2022). Model A is the 3-predictor model of DLCO s z-scores
(GLI), FEV; z-scores (GLI) and TLC z-scores (GLI). Youden’s J—optimal threshold was derived from the ROC
curve. This simulates a real-world scenario in which one must commit to a single decision rule across all models.
Youden’s J threshold for the Model A was 0.230, for the 4-predictor model was 0.254, and for the 3-predictor model with
DLNO, s z-scores [DLNO s z-scores (GAMLSS), FEV, z-scores (GLI), TLC z-scores (GLI), Youden’s J Threshold was
0.32. NRI+ = Pr(Up | Case) - Pr(Down | Case). NRI- = Pr(Down | Ctrl) - Pr(Up | Ctrl) for numbers 1 to 11 above,

Statistical significance is inferred when the 95% confidence interval does not cross zero®. 50,000 bootstrap
samples were used to generate the 95% CI.



Figure S1. The age and sex breakdown between those with emphysema and
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those without emphysema in the pooled dataset, after filtering (=323 controls; n

= 85 with emphysema)
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Figure S2. The association between DLNO1¢s z-scores and DLCO1¢s z-

scores in the filtered pooled dataset

Reference equations of Zavorsky & Cao (2022) '* were used to generate z-scores. The reference
equations of Zavorsky & Cao (2022)!3 were used as they account for the pulmonary function
device used to measure DLNOjos and DLCO0s. Breath-hold time was 9.6 + 0.6 s. solid black
line is the best fit line. The dashed black lines are the 95% prediction CI. The purple dashed lines
are the location of the lower limit of normal (i.e. z-score = —1.645). red circles = smokers with
emphysema. Green circles represent smokers without emphysema.

DLNO s z-scores = 0.871-(DLCO1¢ z-scores) — 0.126, R> = 0.71, standard error of the estimate
=0.692, p <0.0001. The 95% CI for the slope = 0.816 to 0.925, n = 422 (323 smokers without
emphysema and 85 smokers with emphysema). Segmented, “Piecewise” equations were used.

N WA

DLNO z-scores

DLCO z-scores
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Figure S3. Bayesian Information Criterion (BIC) and Leave-One-Out Information
Criterion (LOOIC) of models for emphysema prediction and generalizability.

Models are ranked by their difference in BIC (black circles) and LOOIC (white circles) relative to the top-
performing model (top = best). This figure is a continuation of Figure 1 in the manuscript in which the top
17 models are presented. Here, the first ranked model (Model C, the top ranked model) is there for perspective,
and then 18" through 34" ranked models are presented below. BIC penalizes model complexity; LOOIC
evaluates predictive performance via cross-validation.

e Red zone (BIC or LOOIC difference < 2.2): Models nearly as good as the best model.

e Yellow zone (BIC or LOOIC difference 2.3-5.9): Models with substantial but acceptable
performance differences compared to the best model.

e Green zone (BIC or LOOIC difference 6.0-9.2): Models with considerably weaker performance
compared to the best model.

e Purple zone (BIC or LOOIC difference > 9.3): Models with significantly poorer fit compared to the
best model.

The x-axis shows the difference from the best model—smaller is better. The best-performing model is the
three-predictor z-score model of TLC + FEV; + DLNO1¢s (GAMLSS) derived from the GLI equations *!° and
DLNO z-scores from the GAMLSS equations '3 (n=323 smokers with without emphysema; n= 85 smokers
with emphysema).

Metric @ BIC O LOOIC

1. MODEL C [TLC & FEV,(GLI),DLNO(GAMLSS) z-scores] — Top model ]
18. DLCO z-scores (GLI) -
19. Summed z-scores(DLNO+DLCO,SLR) -
20. DLCO z-scores (GAMLSS) -
21. DLCO z-scores (SLR) -
22. Summed z-scores(DLNO+DLCO,van der Lee) -
23. KCO z-scores (GLI) -
24. Two predictor z-scores (DLNO & DLCO,SLR) -
25. Two predictor z-scores {DLNO & DLCO,van der Lee) -
26. DLCO z-scores (van der Lee) -
27. KCO z-scores (van der Lee) -
28. DLNO z-scores (SLR) -
29. DLNO z-scores (van der Lee) -
30. FVC z-scores {(GLI) -
31. TLC z-scores (GLI) -
32. VA z-scores (GLI) -
33. VA z-scores (GAMLSS) -
34. VA z-scores (SLR) -

0 15 130 170 200 240 260 280
Difference in BIC or LOOIC relative to the BIC-Best Model
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Figure S4. ROC and PR Curves with cross-validation performance for the three-
predictor z-score model of TLC z-scores + FEV1 z-scores + DLNO1¢s (GAMLSS)

(A) Receiver Operating Characteristic (ROC) curve showing the trade-off between sensitivity (true positive
rate) and 1-specificity (false positive rate) across 5x5 repeated cross-validation. (B) Precision-Recall (PR)
curve illustrating the relationship between precision (positive predictive value) and sensitivity. Shaded areas
reflect variability across folds based on 100,000 bootstrapped samples; the red dot marks the optimal operating
point on each curve.

The ROC curve shows strong performance with high sensitivity and low false positive rates (AUROC = 0.96;
95% CI: 0.95-0.97). The PR curve starts with precision near 1.0 at low recall but declines to ~0.4 at full recall,
with wider variability at higher recall values. Youden’s J = 0.82; threshold = 0.30. Other metrics include PR =
0.91 (95% CI: 0.88-0.93), sensitivity = 0.87 (95% CI: 0.83-0.90), specificity = 0.95 (95% CI: 0.95-0.96), and
MCC =0.81(95% CI: 0.78-0.84). Results are based on 323 smokers without and 85 with emphysema. Logistic
regression outputs for this model are reported in Table 2.
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Figure S5. Discriminatory classification performance for the bottom 24 predictive

models.

The Matthews correlation coefficient (MCC) and the area under the receiver operating characteristic curve
(AUROC) are shown for models 11 through 34 (the bottom 24 models). Models sharing the same color for
their point estimates are not statistically different from one another, based on 10 000 bootstrapped samples (2-
sided) and after correction for multiple comparisons at a false-discovery-rate of 5% using the Benjamini-
Hochberg procedure.

® MCC ® MCC ® MCC ® MCC ® AUROC ® AUROC ® AUROC

Note: values that have the same color are not statistically different from one another.
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Figure S6. Scree plot of variance explained by principal components in COPD
analysis

This scree plot displays variance explained per principal component (orange line/points) and cumulative
variance (blue line). PC1-PC4 explain 51.5%, 16.6%, 11.6%, and 9.5% of the variance, respectively, for a
cumulative total of 89.2%. The sharp drop after PC1 suggests an “elbow” point, with most variance captured
in the first three components.

Although including PC4 would raise total explained variance above the common 85% threshold, logistic
regression showed no meaningful association between PC4 and COPD status. The coefficient (B = 0.09)
represents the change in the log odds of having COPD for each one-unit increase in PC4, controlling for other
components. This effect was small and non-significant (SE = 0.17; z = 0.54; p = 0.587), with an odds ratio of
1.09 (95% CI = 0.78-1.53), indicating no clear relationship. For parsimony and interpretability, only PC1—
PC3 were retained. See Tables S11-S14 for full results.
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Figure S7. Decision curve analysis for COPD classification models

Net benefit is plotted against the threshold probability (0-0.25) using out-of-fold predictions from repeated
cross-validation. Curves compare three models with two references: Treat All (light grey) and Treat None
(dashed black). Shaded bands represent 95% bootstrap Cls. Across the clinically relevant range (probability
threshold = 0-0.25), all three models outperform 7reat None, and—except at very low thresholds—also
outperform 7reat All. Once the probability threshold exceeds the disease prevalence (~0.21), the net benefit of
Treat All drops to zero, while the models remain positive. The 4-predictor model performs similarly to both 3-
predictor models; their curves overlap with minimal differences across thresholds. Net benefit remains around
0.16-0.20—translating to 16—20 more true positives per 100 patients compared to treating none. In practice,
either 3-predictor model (DLCO1os or DLNOjs) offers nearly the same clinical utility as using both, with little
added value from including both measures.
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