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Introduction/Objective: Respiratory microbiome studies have fostered our understanding of the various phenotypes and endotypes 
of heterogeneous chronic obstructive pulmonary disease (COPD). This study aimed to identify microbiome-driven clusters that reflect 
the clinical features and dominant microbiota of COPD. 

Methods: This cross-sectional study included 32 patients with stable COPD between December 2019 and December 2020 from the 
outpatient clinic of the China-Japan Friendship Hospital. Sputum samples were tested for 16S rRNA. Patients were classified according 
to the species level using an unsupervised clustering method to compare the inflammatory phenotypes of 2 clusters and analyze the 
correlation between the main bacteria and clinical indicators in each cluster. Patients were further divided into 2 clusters according 
to microorganisms. 

Results: Neutrophils in cluster 1 were significantly increased compared with cluster 2. Cluster 1 was predominantly Bacteroides, 
while cluster 2 was dominated by Prevotella and Fusobacterium at the genus level. Fusobacterium was negatively correlated with the 
COPD Assessment Test (CAT) score, and Bacteroides were positively correlated with the number of acute exacerbations of COPD. 

Conclusion: This study found that differential flora was negatively associated with CAT scores and the number of acute exacerbations 
of COPD. This microbiome-driven, unbiased clustering method for COPD can help identify new endotype-related COPD phenotypes.

Abstract

1.	 National Center for Respiratory Medicine, State Key Laboratory of Respiratory 
Health and Multimorbidity, National Clinical Research Center for Respiratory 
Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical 
Sciences, Beijing, China

2.	 Peking Union Medical College, Department of Pulmonary and Critical Care 
Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 
Beijing, China

3.	 Centre for Evidence-based Chinese Medicine, School of Traditional Chinese 
Medicine, Beijing University of Chinese Medicine, Beijing, China

%pred=percentage predicted; BMI=body mass index; CAT=COPD 
Assessment Test; CH=Calinski-Harabasz; COPD=chronic obstructive 
pulmonary disease; FEV1=forced expiratory volume in 1 second; 
ICS=inhaled corticosteroid; LDA=linear discriminant analysis; 
LEfSe=linear discriminant analysis effect size; mMRC=modifed Medical 
Research Council; PAM=partitioning around medoid; PCoA=principal 
coordinates analysis

Abbreviations: 

This study was supported by the National Natural Science Foundation 
of China (grant no. 81800036) and the National High-Level Hospital 
Clinical Research Funding, Elite Medical Professionals Project of China-
Japan Friendship Hospital (grant no. ZRJY2021-TD02).

Funding Support: 

Yu T, Chen Y, Ren X, Yang T. Respiratory microbiome profiles associated 
with distinct inflammatory phenotype and clinical indexes in chronic 
obstructive pulmonary disease. Chronic Obstr Pulm Dis. 2024;11(2):155-
163. doi: https://doi.org/10.15326/jcopdf.2023.0445

Citation:

Date of Acceptance: December 12, 2023
Published Online Date: December 19, 2023

Xiaoxia Ren, MD
Department of Pulmonary and Critical Care Medicine
Center of Respiratory Medicine
China-Japan Friendship Hospital
No 2, East Yinghua Road
Chaoyang District
Beijing 100029, China
Email: xiaoxiaren2011@163.com

Publication Dates: 

Address correspondence to:

alpha-1 antitrypsin deficiency; COVID-19; vaccine; safety; influenza

Keywords:

This article has an online supplement



156 COPD Respiratory Microbiome Profiles

journal.copdfoundation.org | JCOPDF © 2024 Volume 11 • Number 2 • 2024

For personal use only. Permission required for all other uses.

Chronic obstructive pulmonary disease (COPD) is a 
common disease characterized by persistent airway 
symptoms and restricted airflow, which cause airway and/or 
alveolar abnormalities.1 The pathogenesis of COPD is 
complex; inflammation is a major causative mechanism. In 
recent years, bacterial colonization in the lungs of patients 
with COPD has been recognized as an important factor 
contributing to chronic airway inflammation, however, the 
exact underlying mechanisms are unclear.2,3 

Many studies have found significant bacterial 
colonization in the lungs of healthy individuals and patients 
with COPD using 16S rRNA assays.4-7 The main normal 
colonizing bacteria in the lower respiratory tract of the 
healthy population are genera from the phyla Bacteroidetes 
(Bacteroides and Prevotella), Firmicutes (Veillonella 
and Streptococcus), Proteobacteria, and Fusobacteria 
(Fusobacterium).8 In patients with stable COPD, the types 
and proportions of airway microorganisms change, with 
the main colonizing phyla being Aspergillus, Firmicutes, 
and Actinomycetes, with Veillonella, Haemophilus, 
Streptococcus, Prevotella, Neisseria, and Moraxella being 
the dominant genera.4,9 The proportion of Aspergillus 
increases further when acute exacerbations of slow-onset 
lung disease occur.10 Moreover, the alpha and beta diversity 
of airway microorganisms is significantly lower in patients 
with COPD and those with acute exacerbations of COPD 
than in the normal population.11-13 Additionally, changes 
in pulmonary microecology correlate with the severity of 
disease. A study by Sze et al6 found a significant decrease in 
microbial diversity in patients with the Global initiative for 
chronic Obstructive Lung Disease (GOLD)14 stage 4 COPD 
compared with the normal population, mainly associated 
with Firmicutes and Aspergillus. Dicker et al15 also showed 
that Aspergillus was associated with disease stage, risk of 
acute exacerbation, blood eosinophil levels, and predicted 
percentage (%pred) of forced expiratory volume in 1 second 
(FEV1) in patients with COPD. However, few studies have 
explored the correlation among airway microorganisms, 
symptoms, and biological indicators in patients with COPD.

Therefore, this study aimed to detect microbial changes 
in the sputum of patients with stable COPD using the 16S 
rRNA method and to explore their relationship with clinical 
symptoms and biological indicators.

Introduction

Study Population

Thirty-two patients with stable COPD were recruited between 
December 2019 and December 2020 from the outpatient 
clinic of the China-Japan Friendship Hospital, Beijing, 
China. The inclusion criteria for patients with COPD were 

Methodology

as follows: (1) met the GOLD 2021 diagnostic criteria,14 
(2) aged >40 years, and (3) no acute exacerbations within 
1 month. Exclusion criteria were: (1) history of chronic 
diseases such as severe cardiovascular and cerebrovascular 
pathology and liver and kidney insufficiency; (2) history of 
epilepsy and other neuropsychiatric diseases; (3) history of 
antituberculosis drug treatment or active tuberculosis; 
(4) history of thoracic, abdominal, or ophthalmic surgery in 
the last 3 months; (5) pregnancy/ lactation; (6) untreated cancer 
with an expected survival of <1 year; and (7) unwillingness 
to participate and inability to cooperate. All participants 
completed questionnaires, pulmonary function tests, and 
computed tomography examinations. All patients signed an 
informed consent form, and the study protocol was approved 
by the Ethics Committee of the China-Japan Friendship 
Hospital (2018-148-K105). All experiments were performed 
in accordance with the Declaration of Helsinki.

16S rRNA Gene Sequencing

All patients received sputum induction after inhalation of 
3% hypertonic saline from an ultrasonic nebulizer, and 
sputum was stored in a -80°C refrigerator. Total genomic 
DNA was extracted from the sputum samples using the 
cetyltrimethylammonium bromide/sodium dodecyl sulfate 
method. DNA concentration and purity were monitored 
on a 1% agarose gel. According to the concentration, DNA 
was diluted to 1ng/μL using sterile water. Polymerase chain 
reaction amplification was performed using fusion primers 
targeting the V3–V4 region of the 16S rRNA gene. The fusion 
primers used were 806R (5'-GGACTACNNGGGTATCTAAT-3') 
and 341F (5'-CCTACGGGRBGCASCAG-3') with the barcode. 
Sequencing libraries were generated using TruSeq® DNA 
PCR-Free Sample Preparation Kit (Illumina, San Diego, 
California) following the manufacturer's recommendations, 
and index codes were added. Library quality was assessed 
using a Qubit@ 2.0 Fluorometer (Thermo Scientific, 
Waltham, Massachusetts) and an Agilent Bioanalyzer 2100 
system. Finally, the library was sequenced on an Illumina 
NovaSeq (Illumina, San Diego, California) platform, and 
250 bp paired-end reads were generated.

Microbiome Analyses

Paired-end reads were assigned to samples based on their 
unique barcodes and truncated by cutting off the barcodes 
and primer sequences. Fast Length Adjustment of Short Reads 
was used for sequence assembly. Quality filtering of the raw 
tags was performed under specific filtering conditions to 
obtain high-quality clean tags according to the Quantitative 
Insights Into Microbial platform. Finally, the tags were 
compared with those in the reference database using the 
UCHIME algorithm. Sequence analysis was performed using 
UPARSE software. Sequences with ≥97% similarity were 



157 COPD Respiratory Microbiome Profiles

journal.copdfoundation.org | JCOPDF © 2024 Volume 11 • Number 2 • 2024

For personal use only. Permission required for all other uses.

Results

Participant Demographics and Sputum 
Microbiota Composition

A total of 32 patients with COPD were enrolled (Table 1). 
The mean FEV1 %pred was 42.59%, and the mean COPD 
Assessment Test (CAT) and modified Medical Research 
Council (mMRC) dyspnea scale scores were 24.42 and 
2.13, respectively. The predominant phyla observed in 
the microbiome were Firmicutes, Proteobacteria, and 
Bacteroidetes, followed by Actinobacteria and Fusobacteria. 
At the genus level, the most abundant genera were 
Haemophilus, Streptococcus, Neisseria, and Rothia, although 
some individual samples also showed a predominance of 

genera such as Porphyromonas, Acinetobacter, Abiotrophia, 
Lactobacillus, and unknown members of Prevotellaceae and 
Corynebacteriaceae (Supplementary Figure 1A-1B in the 
online supplement).

Participant Clustering and Characteristics 

According to the PAM clustering and CH index, for 
sputum species-level bacteria, clustering patients into 2, 
3, or 4 clusters resulted in a higher CH index, whereas 
the PCoA plots showed better separation (Figure 1A-1B, 
Supplementary Figure 2A-2B in the online supplement). We 
compared the clinical indexes of the patients using different 
clustering methods and found significant differences in blood 
neutrophil counts, number of exacerbations, and CAT scores 
when divided into 2 clusters (Figure 1C, Supplementary 
Figure 2C-2D in the online supplement). When divided into 
3 or 4 clusters, there was only one sample in a cluster and the 
sample size was small and thus, could not be representative 
to a certain extent. Therefore, we divided the patients into 2 
clusters. The clinical demonstration of each cluster is shown 
in Table 1. 

Dominant Microbiotas in the Clusters

We used LEfSe analysis to analyze the different microbial 
distributions in the 2 patient groups (LDA score: 4.0) (Figure 
2). At the phylum level, Actinobacteria were the more 
dominant microorganisms in cluster 1, and Fusobacteria 
were the predominant microorganisms in cluster 2. At the 
genus level, cluster 1 was dominated by Bacteroides, while 
cluster 2 was dominated by Prevotella, Fusobacterium, and 
unidentified Prevotellaceae. As it is difficult to fully recognize 
the species level of many microorganisms through 16S rRNA, 
we compared 2 clusters at the genus level21 at P<0.05 using 
the Kruskal–Wallis H test to identify the dominant microbiota 
related to each cluster (Figure 3). Cluster 2 had more 
elevated counts of Prevotella, Fusobacterium, Solobacterium, 
and Gemella than cluster 1, whereas cluster 1 had more 
elevated counts of Streptomyces, Peptoanaerobacter, and 
Ottowia than cluster 2. Combining these 2 analyses, cluster 
2 had more Prevotella and Fusobacterium than cluster 1.

Relationship Between the Sputum Flora and 
Clinical Phenotypes

To explore the correlation between differentially predominated 
changes in microbiota tested in the sputum, including Prevotella, 
Fusobacterium, and Bacteroides, and the clinical index parameters, 
we performed Spearman correlation analysis (Supplementary 
Table 1 in the online supplement). As shown in Figure 4, there 
was a positive correlation between Bacteroides and the number of 
acute exacerbations (r=0.417, P=0.018), a negative correlation 
between Fusobacterium and CAT scores (r=-0.357, P=0.045), 

assigned to the same operational taxonomic units. 

Microbiome Data Analysis for the Clustered Groups

We performed clustering analysis on the samples using 
species-level abundance data, employing the partitioning 
around medoid (PAM) clustering algorithm based on the 
Jensen–Shannon divergence.16 To determine the optimal 
number of clusters, we calculated the Calinski–Harabasz 
(CH) index based on cluster count.17 The resulting clusters 
were visualized using the "ade4" package in R for principal 
coordinates analysis (PCoA) utilizing Jensen–Shannon 
divergence.18

Linear discriminant effect size (LEfSe) analysis 
was conducted to identify the microbiota as biomarkers 
associated with each cluster. Significant biomarkers were 
identified using a linear discriminant analysis (LDA) score 
>4.0 and a P<0.05 in pairwise comparisons using the Mann–
Whitney test and Bonferroni's methods.19 The resulting 
biomarkers were visualized using GraPhlAn for cladogram 
representation and the R statistical package (R version 3.2.5; 
Institute for Statistics and Mathematics, Vienna, Austria) 
with the "ggplot" package for boxplot visualization, based 
on the Kruskal–Wallis H test.20

Statistical Analysis

Patients were clustered using PAM clustering and the CH 
index, and the demographic characteristics of different 
groups of patients were analyzed using the t-test for 
continuous variables and Chi-square test for categorical 
variables. Continuous data are presented as median±standard 
deviation, and categorical data are presented as numbers and 
percentages. Spearman’s correlation was used to assess the 
correlation between each group of marker microorganisms 
and clinical indicators. Statistical significance was set at 
P<0.05, and the data were analyzed using SPSS (version 
26.0; IBM, Armonk, New York).
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Age (years)
Sex (male, %)
BMI (kg/m2)
Smoking History

Current Smoker
Ex-smoker
Nonsmoker

Smoking Index
Number of Exacerbations
ICS (%)
FEV1 %pred (%)
CAT Score
mMRC Score
Blood Neutrophils (x109/L)
Blood Eosinophils (x109/L)
Complications

Diabetes (n, %)
Hypertension (n, %)

Table 1. Characteristics of Patients With COPD

Total (n=32) Cluster 1 (n=15) Cluster 2 (n=17)
65.06±7.26

16 (94.12%)
23.74±3.54

2
11
3

33.63±37.48
2.00±1.12

7 (41.18%)
44.44±26.92
21.06±8.13
2.06±1.34
4.66±1.95
0.19±0.11

3 (17.65%)
6 (35.29%)

67.12±8.74
29 (90.62%)
22.66±3.74

8
20
3

39.92±29.32
2.75±2.214

15 (46.88%)
42.59±24.99
24.42±8.61
2.13±1.20
5.58±2.80

0.22±0.146

7 (21.88%)
8 (25.00%)

69.47±9.90
13 (86.67%)
21.43±3.69

6
9
0

46.20±17.07
3.60±2.82

8 (53.33%)
40.25±23.38
28.00±7.85
2.20±1.08
6.63±3.29
0.26±0.17

4 (26.67%)
2 (13.33%)

Data were represented as mean±SD for continuous variables where appropriate and n (%) for categorical variables. 

COPD=chronic obstructive pulmonary disease; BMI=body mass index; ICS=inhaled corticosteroid; FEV1 %pred= forced expiratory volume in 1 second percentage predicted; CAT=COPD Assessment Test; 
mMRC=modified Medical Research Council dyspnea scale

Variables P

0.156
0.471
0.080

0.075

0.247
0.039
0.492
0.686
0.022
0.757
0.045
0.206

0.552
0.194

_______________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________

Figure 1. Participant Clustering and Characteristics

(A) CH index according to cluster number using partitioning around the medoid clustering method based on Jensen–Shannon divergence at the species level.
(B) Two-dimensional principal coordinates analysis plot for cluster 2.
(C) Comparison of blood inflammatory phenotypes and CAT scores in clusters 1 and 2. 

CH=Calinski–Harabasz; CAT= COPD Assessment Test
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Figure 2. Dominant Microbiotas in the Clusters

(A) LDA effect size analysis across the 2 clusters with P<0.05 and an LDA score >4.0.
(B) Cladogram showing differentially abundant taxa according to each cluster. 

LDA=linear discriminant analysis

Figure 3. Comparison of Microbiota at the Genus Level Among the Clusters

Kruskal–Wallis H test with P<0.05.

LDA=linear discriminant analysis
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and no significant correlation between other bacteria and 
the number of acute exacerbations or CAT scores.

Using the unbiased microbiome profile clustering method 
for clustering sputum microorganisms in patients with 
COPD, we divided patients into 2 clusters. Patients with a 
lower abundance of Prevotella and Fusobacterium and a 
higher abundance of Bacteroides had higher CAT scores and 
a neutrophil inflammatory phenotype. Correlation analysis 
showed a positive correlation between Bacteroides and the 
number of acute exacerbations and a negative correlation 
between Fusobacterium and CAT scores.

The unsupervised clustering of microorganisms used in 
this study is a relatively new method. Most studies exploring 
the correlation between microorganisms and clinical 
phenotypes are grouped based on clinical phenotypes, 
with few groupings based on microorganisms. We chose 
to group patients with COPD according to their microbial 
characteristics, which is different from the method used in 
previous studies.22-24 Meanwhile, one study in previous 
literature grouped patients according to the major genus 
Haemophilus but did not use the unsupervised clustering 
method used in this study,25 which has some bias. In 
addition, this method has also been used in a study on adult 
and pediatric asthma that showed a significant correlation 
between classification and clinical characteristics.26,27 
Alongside this cluster method, we also identified the 
neutrophil inflammatory phenotype, an important 
phenotype in COPD. Therefore, this cluster analysis method 
may be more clinically relevant.

In the present study, cluster 2 had a lower acute 
exacerbation of COPD, neutrophil inflammation, and CAT 

Discussion

Figure 4. Correlation Between COPD Assessment Test Scores and the Number of Acute 
Exacerbations Versus Fusobacterium and Bacteroides

COPD=chronic obstructive pulmonary disease; CAT=COPD Assessment Test

score compared to cluster 1. Additionally, at the genus level, 
there was a higher Prevotella count. A negative correlation 
was found between Prevotella and disease severity. This is 
comparable to Mayhew et al,28 which found that Haemophilus 
and disease severity were positively correlated, while 
Prevotella was negatively correlated. Similarly, another study 
found that Prevotella abundance was significantly higher in 
healthy individuals and significantly associated with better 
lung function and reduced symptoms in patients with 
COPD.29 Moreover, previous studies have also found that 
Fusobacterium exhibited a significant positive correlation 
with pre-FEV1,30 and Fusobacterium and Prevotella jejuni 
were significantly more abundant in the infrequent than 
in the frequent exacerbator group.23 This confirms that 
Fusobacterium and Prevotella are negatively correlated with 
disease severity. 

This study had some limitations. First, the sample size 
was not sufficiently large, and a larger sample size is needed 
to confirm the results. Second, this was a cross-sectional study 
that can only show a correlation between microorganisms 
and clinical indicators but does not confirm the existence 
of a causal relationship. Finally, this was a clinical study 
lacking relevant basic experiments for validation. Therefore, 
additional data are required to support the results of this 
study.

This microbiome-driven unbiased clustering method for 
COPD can help identify new endotype-related COPD 
phenotypes. This study divided patients into 2 clusters for 
microbial clustering and found that differential flora was 
negatively associated with CAT scores and the number of 
acute exacerbations of COPD. Thus, understanding the 
mechanisms that drive bacterial composition and disease 

Conclusion
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will help to prevent and discover new phenotypes of COPD 
and treat this condition.
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