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Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by pathologic changes in the airways, lung 
parenchyma, and persistent inflammation, but the links between lung structural changes and blood transcriptome patterns 
have not been fully described. 

Objectives: The objective of this study was to identify novel relationships between lung structural changes measured by 
chest computed tomography (CT) and blood transcriptome patterns measured by blood RNA sequencing (RNA-seq). 

Methods: CT scan images and blood RNA-seq gene expression from 1223 participants in the COPD Genetic Epidemiology 
(COPDGene®) study were jointly analyzed using deep learning to identify shared aspects of inflammation and lung structural 
changes that we labeled image-expression axes (IEAs). We related IEAs to COPD-related measurements and prospective health 
outcomes through regression and Cox proportional hazards models and tested them for biological pathway enrichment. 

Results: We identified 2 distinct IEAs: IEAemph which captures an emphysema-predominant process with a strong positive 
correlation to CT emphysema and a negative correlation to forced expiratory volume in 1 second and body mass index 
(BMI); and IEAairway which captures an airway-predominant process with a positive correlation to BMI and airway wall 
thickness and a negative correlation to emphysema. Pathway enrichment analysis identified 29 and 13 pathways significantly 
associated with IEAemph and IEAairway, respectively (adjusted p<0.001). 

Conclusions: Integration of CT scans and blood RNA-seq data identified 2 IEAs that capture distinct inflammatory processes 
associated with emphysema and airway-predominant COPD.
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Chronic obstructive pulmonary disease (COPD) is one 
of the most prevalent chronic diseases,1 responsible 
for approximately 3 million deaths annually.2 COPD is 
characterized by persistent respiratory symptoms and 
poorly reversible airflow limitation.3 It is associated with 
an abnormal inflammatory response of the lungs to 
cigarette smoke or other noxious particles,4 which results 
in lung structural changes, including the loss or narrowing 
of airways (airway disease) and parenchymal destruction 
(emphysema).5 In addition to its characteristic lung 
structural changes, the changes in blood transcriptome 
patterns have been linked to COPD exacerbations6,7 and 
lung function decline.8

Although lung structural changes and the changes in 
blood transcriptome patterns are characteristic aspects of 
COPD, their relationship remains unclear. Therefore, we 
are motivated to apply a deep learning method to analyze 
computed tomography (CT) imaging and blood RNA-
sequencing (RNA-seq) data to identify novel relationships 
between them. 

Based on the paradigm of COPD as a collection of 
treatable traits,9 we hypothesize that COPD heterogeneity 
can be described by continuous measures corresponding 
to distinct disease processes that are present to varying 
degrees in affected individuals. We refer to these continuous 
measures as “disease axes,”10 and we further hypothesize 
that integrative analysis of CT images and blood RNA-

Introduction

seq data can identify disease axes that reveal patterns of 
association between lung structural abnormalities and 
blood transcriptomic profile change. We tested these 
hypotheses by training a deep learning model on data 
from 1223 participants in the COPD Genetic Epidemiology 
(COPDGene®) study11 with CT scans and blood gene 
expression data. Our analysis identified 2 disease axes that 
capture patterns of CT features consistent with emphysema 
and airway-predominant disease processes that are also 
associated with emphysema core-peel distribution and 
specific inflammatory pathways.

A comprehensive description of methods is included in the 
online supplement, and all analysis code is available in a 
GitHub repository (https://github.com/batmanlab/IEA).

Participant Enrollment and Data Collection

COPDGene enrolled 10,198 participants with a minimum 
10-pack-year lifetime smoking history at 21 centers across 
the United States (NCT00608764).11 Individuals with 
a history of lung diseases other than asthma, such as 
pulmonary fibrosis, extensive bronchiectasis, and cystic 
fibrosis, are excluded from this study. Five-year follow-
up data are available for 6717 participants, and 10-year 
follow-up visits are currently being completed. Participants 
underwent spirometry, questionnaire assessments, 
standardized inspiratory and expiratory chest CT imaging, 
and genome-wide single nucleotide polymorphism (SNP) 
genotyping. At the second visit (year 5), complete blood 
counts were conducted, PAXgene blood RNA tubes were 
collected, and RNA-seq was performed. Each center obtained 
institutional review board approval, and all participants 
provided written informed consent. 

Learning Image-Expression Axes 

Only participants whose CT scans were obtained on Siemens 
scanners with the b31f kernel and with RNA-seq data 
available at the second visit were analyzed. CT features were 
extracted from Digital Imaging and Communications in 
Medicine (DICOM) standard image files using the following 
procedure. Every inspiratory chest CT scan was divided into 
581 patches, each with a volume of 323 mm3. We extracted 
128 features from each patch using context-aware self-
supervised representation learning (CSRL),12 resulting in a 
581×128-dimensional matrix for each scan. 

Image-expression axes (IEAs) were constructed where 
CSRL features were the input to a multilayer perceptron 
(MLP) that produced a low-dimensional representation for 
each patch. Further supervised dimension reduction was 
performed to obtain participant-level IEAs using a product 

Methods
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Results

A total of 1223 participants in the COPDGene study with 
complete CT scan and blood RNA-seq data were analyzed, and 
the flow diagram for the selection of participants for analysis 
is shown in Supplemental Figure E1 in the online supplement. 
The analyzed participants were 50% female, 82% non-Hispanic 
White, and 18% African American, and the average age of the 
participants was 67 years. The Global initiative for chronic 
Obstructive Lung Disease (GOLD)3 spirometric stage distribution 
of participants was 42.5% in GOLD 0, 44.0% in GOLD 1–4, 
and 13.5% with preserved ratio-impaired spirometry (PRISm). 
For model training and validation, participants were split into 
training and test sets, with no statistically significant differences 
in demographic or key clinical characteristics between these 
groups (Table 1). 

Image-Expression Axe Model Training and 
Reproducibility Analysis

A schematic overview of the model training process is 
shown in Figure 1, and the data flow is summarized in 
Supplemental Figure E2 in the online supplement. To 
maximize the stability of the IEAs and reduce the effects 
of sampling variability, we used nested cross-validation in 
the model training process to select the number of genes 
included in the model and the number of IEAs identified. 
For gene selection, we tested genes in the training data for 
the association to the top 128 principal components of the 
CSRL image features using an F-test, and a series of p-value 
thresholds for gene inclusion were explored, ranging from 
p=1x10-6 to p=1. The resulting IEAs were found to be 
stable across the entire range of p-value thresholds, and the 
threshold corresponding to p=0.01 was selected (Pearson’s 
r for IEAs across cross-validation folds ≥0.96, Supplemental 
Table E1 in the online supplement). With this threshold, 
4685 genes were included in the final model. The number 

of an expert's model.13 At this stage, we applied statistically 
independent constraints with the Hilbert-Schmidt 
independence criterion14 to ensure that each IEA captured 
an independent disease process. A final linear layer used 
IEAs as the input to predict the expression levels of the genes 
simultaneously. The parameters of the model were jointly 
optimized via Adam, an optimization algorithm used to train 
a machine-learning model.15 In the training process, we 
evaluated the impact of feature selection on genes by testing 
each gene for the association with the top-128 principal 
components of the CSRL features in the training dataset. 
We also evaluated various thresholds for gene inclusion 
determined by the p-value of the F-test for each gene.

We randomly split the data into training and testing sets 
with sizes of 923 and 300, respectively. Model training was 
performed in the training set using 5-fold cross-validation, 
giving us 5 models. The final IEAs were given by taking the 
average value of the IEAs from the 5 models.

Association of Image-Expression Axes With 
Clinical Measurements 

We computed Pearson correlation coefficients between IEAs 
and clinical measurements to understand their association. 
A full description of the measurements is included in the 
online supplement. Multivariable analyses were conducted 
by training ordinary least squares models for continuous 
measurements and logistic regression models for categorical 
measurements. We conducted a survival analysis (starting 
from the second visit) with the Cox proportional hazards 
model.16 We applied the IEA model to 1527 participants 
from another subset of the COPDGene dataset to provide 
independent replication of our IEA associations. These 
participants had their CT scans available but without RNA-
seq data and, therefore, were not used for model training. A 
full description of these models, including model covariates, 
is provided in the online supplement. 

Comparison of Image-Expression Axes to Other 
Disease Axes

We compared IEAs to the following disease axes: 

1.	 COPD factor analysis axes (FAs): Previously published 
phenotype disease axes identified through factor 
analysis.17 

2.	 Principal component analysis image-only axes (PCA-
Is): Disease axes constructed by applying PCA to the 
CSRL features. 

The comparative analyses included the calculation of 
Pearson correlation coefficients between IEAs and other 
disease axes, association analyses to clinical measurements, 
and comparison of nested models for clinical outcomes 
utilizing IEAs, FAs, and PCA-Is in determining whether IEAs 

improved the performance of models already containing 
FAs and/or PCA-Is. 

Differential Expression and Usage Analyses

To identify the genes and pathways associated with IEAs, we 
conducted a differential gene expression analysis using the voom 
function18 of the limma package.19 Voom prepares RNA-Seq 
data for linear modeling. It works in conjunction with limma, 
a library specifically designed to assess differential expression 
through linear models. Multiple comparisons were corrected with 
the Benjamini-Hochberg method to control the false discovery 
rate (FDR)20 at 10%. Gene ontology (GO) pathway enrichment 
analysis was performed for pathways in the “biological process” 
category using the Top GO (v2.33.1) method.21 The threshold 
for statistical significance was an adjusted P-value<0.001.
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Demographics
 Age
 Gender, %females
 Race, %African American
Clinical Measurements
 %Current Smoker
 Body Mass Index 
 Pack Years
 FEV1 %pred
 FEV1 / FVC
 SGRQ Total Score
 mMRC Dyspnea Score
 6-Minute-Walk Distance
 Frequent Exacerbator-History
Quantitative CT
 perc15
 %Emphysema at -950HU
 %Gas Trapping
 Pi10
 %WA Segmental
 Qperc15peel-core

GOLD Stages
 %GOLD 0
 %GOLD 1
 %GOLD 2
 %GOLD 3
 %GOLD 4
 %PRISm
Longitudinal
 ΔFEV1 %predicted
 ΔFEV1 / FVC
 Frequent Exacerbator-Future
 5-year Mortality

Table 1. Participant Characteristics in Training and Test Data

Training (n=923) p-value

0.961
0.778
0.788

0.661
0.646
0.860
0.226
0.227
0.818
0.464
0.308
0.403

0.637
0.497
0.612
0.159
0.491
0.459

0.300
0.349
0.663
0.471
0.554
0.611

0.789
0.235
0.084
0.769

Continuous variables are expressed as means and standard deviations.
Categorical variables are expressed as percentages.
P-values are obtained using the Kruskal-Wallis test for continuous variables and Chi-square test for proportions, comparing the training and test data.
ΔFEV1 %predicted and ΔFEV1/FVC are computed by subtracting the visit 3 values from the visit 2 values of FEV1 % of predicted or FEV1/FVC and dividing them by the number of years between the 2 visits. 
Qperc15peel-core=100*log(perc15peel/ perc15core), where the peel region is defined to be <5mm from the lung boundary and the core region is >20mm from the lung boundary.

FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; SGRQ=St George’s Respiratory Questionnaire; mMRC=modified Medical Research Council dyspnea scale; CT=computed tomography; 
perc15=15th percentile Hounsfield unit in inspiratory CT scan; HU=Hounsfield unit; %gas trapping=%low attenuation area using −856 Hounsfield unit threshold on expiratory CT scan; Pi10=the average wall 
thickness for a hypothetical airway of 10-mm lumen perimeter on CT; %WA segmental=the percentage of airway wall area for 3rd generation bronchi; GOLD=Global initiative for chronic Obstructive Lung Disease; 
PRISm=preserved ratio-impaired spirometry

Test (n=300)

66.6±8.4
49.7%
18.6%

30.3%
29.1±6.4

44.8±24.4
77.7±25.1
0.67±0.15
21.3±19.4

1.1±1.3
1292±443

6.3%

-922±28
6.9±10.3

21.4±20.2
2.2±0.6

49.9±8.2
-2.5±1.6

43.2%
8.5%

19.4%
11.5%
4.6%

12.9%

-0.3±2.1
-0.0±0.0

4.8%
14.7%

66.6±9.2
50.7%
19.3%

28.5%
29.1±5.9

44.3±25.0
76.0±24.8
0.66±0.15
22.4±21.1

1.2±1.4
1260±433

7.7%

-923±29
7.2±10.8

21.1±19.1
2.3±0.6

50.2±8.2
-2.5±1.6

39.7%
10.3%
20.5%
9.9%
5.5%

14.0%

-0.3±2.3
-0.0±0.0

8.6%
15.2%
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_______________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
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________________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
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_______________________________________________________________________________________________________________________________________
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________________________________________________________________________________________________________________________________________
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________________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
_______________________________________________________________________________________________________________________________________
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________________________________________________________________________________________________________________________________________
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________________________________________________________________________________________________________________________________________
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_______________________________________________________________________________________________________________________________________
________________________________________________________________________________________________________________________________________
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of IEAs identified by the model was determined by the 
amount of gene expression variance explained, which was 
the highest with 2 IEAs (Figure 2).

Image-Expression Axe Association to Clinical 
and Radiographic Features and Prospective 
Outcomes

To provide a clinical interpretation of the IEAs, we calculated 
their correlation to a range of COPD-related clinical and 
imaging measurements Figure 3. We refer to the first IEA as 
the emphysema axis (IEAemph), because it demonstrates a 

pattern of clinical associations consistent with quantitative 
emphysema. Specifically, higher levels of IEAemph were 
associated with lower lung function, emphysema, lower 
body mass index (BMI), and a lower likelihood of being a 
current smoker. The second IEA is consistent with airway 
disease and is referred to as IEAairway. Higher levels of 
IEAairway were associated with higher BMI, thicker airways, 
and less emphysema. The analysis comparing IEAs with 
blood cell counts reveals that IEAemph is positively associated 
with the neutrophil count, proportion of neutrophils, and 
monocyte count, but negatively correlated with lymphocyte 
count and proportion. On the other hand, IEAairway is 
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Figure 1. Overview of the Machine Learning Workflow

CT images were processed as 323 mm3 patches from which 128 features were constructed using the CSRL.12 These features were the input for a MLP that processed a 581×128×923 tensor to output a 581×2×923 
participant-level data representation. The participant-level latent representation (IEAs) is given by summarizing the patch-level features into a matrix of 2×923. We introduce a linear layer (2 -> 4685) that estimates 
gene expression for each participant, taking the IEA as the input. We apply independence constraints to ensure IEAs are independent of each other. The overall objective function is given by minimizing the mean-
squared error of the gene expression levels in prediction.

CT=computed tomography; IEAs=image-expression axes; CSRL=context-aware self-supervised representation learning; MLP=multilayer perceptron

Figure 2. Total Variance of the Gene Expression Explained Versus the Number of Image-
Expression Axes

The figure on the left shows the plot of the 4685 selected genes. The figure on the right shows the plot for all the genes. The figures show that when the number of IEAs is 2, the total variance explained is maximized. 
We choose the number of IEAs to be two. 

IEAs=image-expression axes

positively associated with both white blood cell count and 
neutrophil count. The IEAs were uncorrelated with each 
other, suggesting that they may capture different underlying 
disease processes.

Figure 3 reveals that both IEAs showed a negative 
association with emphysema peel/core distribution 
(Qperc15peel-core), indicating that higher IEA values are 
linked to more emphysema in the central regions of the lung. 
To further explore this association, we conducted sensitivity 

analyses by dividing the lung into concentric bands based on 
the distance to the lung boundary and defining the peel region 
with different bands (as detailed in the online supplement). 
The results suggest that IEAemph exhibits a consistently positive 
association with Qperc15peel-core, regardless of the band used 
to define it. However, it is currently unclear whether the 
association between IEAairway and Qperc15peel-core reflects 
a real biological phenomenon at the extreme periphery of 
the lung, or if  it is an artifact of  segmentation. 
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Figure 3. Pearson’s Correlation Between Image-Expression Axes and COPD-Related 
Characteristics and Health Outcomes

ap<.01
bp<.001
cp<.05

Qperc15peel-core=100 log(perc15peel/perc15core), where the peel region is defined to be <5mm from the lung boundary and the core region is >20mm from the lung boundary.
ΔFEV1 %predicted and ΔFEV1/FVC are computed by subtracting the visit 3 value from the visit 2 value of FEV1 % of predicted or FEV1/FVC and dividing it by the number of years between the 2 visits.

FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; SGRQ=St George’s Respiratory Questionnaire; mMRC=modified Medical Research Council dyspnea scale; CT=computed tomography; 
perc15=15th percentile Hounsfield unit in inspiratory CT scan; %gas trapping=%low attenuation area using −856 Hounsfield unit threshold on expiratory CT scan; Pi10=the average wall thickness for a hypothetical 
airway of 10-mm lumen perimeter on CT; %WA segmental=the percentage of airway wall area for 3rd generation bronchi; IEA=image-expression axes; IEAemph=emphysema IEA; IEAairway=airway disease IEA

To determine whether the IEAs provided clinical 
information in addition to standard demographic variables, 
we tested the significance of adding IEAs to regression 
models for various COPD-related measures (Table 2, 
Table 3, and Supplemental Tables E2 and E3 in the online 
supplement). After adjusting for standard demographic 
variables, both IEAemph and IEAairway were significantly 
associated with forced expiratory volume in 1 second 
(FEV1) percentage predicted (%pred), FEV1 to forced vital 
capacity (FVC) ratio, St George’s Respiratory Questionnaire 

(SGRQ) total score, modified Medical Research Council 
(mMRC) dyspnea score, and 6-minute-walk distance, as 
well as neutrophil count. Additionally, IEAemph was also 
associated with being a frequent exacerbator-history, a 
frequent exacerbator-future, an all-cause mortality rate, 
monocyte proportion, and eosinophil count. On the other 
hand, IEAairway is associated with white blood cell count, 
neutrophil proportion, lymphocyte count, and lymphocyte 
proportion. 
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Clinical Measurements
 Body Mass Index 
 FEV1 %predicted
 FEV1/FVC
 SGRQ Total Score
 mMRC Dyspnea Score
 6-Minute-Walk Distance
Quantitative CT
 perc15
 %Emphysema at -950HU
 %Gas Trapping
 Pi10
 %WA Segmental
 Qperc15peel-core

Blood Cell Counts
 White Blood Cell Count
 Neutrophil Count
 Neutrophil %
 Lymphocyte Count
 Lymphocyte %
 Monocyte Count
 Monocyte %
 Eosinophil Count
 Eosinophil %
 Basophil Count
 Basophil %
Longitudinal
 ΔFEV1 %predicted
 ΔFEV1/FVC

Table 2. Multivariable Associations of Image-Expression Axes to Continuous COPD-Related 
Characteristics and Health Outcomes

βIEAemph (95%CI) βIEAemph (95%CI)

0.71b (0.63, 0.79)
-0.04 (-0.14, 0.07)
0.18b (0.09, 0.26)
0.14a (0.04, 0.24)
0.16a (0.06, 0.26)

-0.28b (-0.39, -0.18)

0.54b (0.50, 0.59)
-0.30b (-0.37, -0.23)
-0.36b (-0.42, -0.29)

0.20b (0.08, 0.32)
0.36b (0.25, 0.47)

-0.30b (-0.41, -0.20)

0.13c (0.01, 0.24)
0.09 (-0.02, 0.21)
0.09 (-0.03, 0.20)
0.10 (-0.01, 0.21)
0.07 (-0.05, 0.19)

-0.03 (-0.15, 0.09)
0.05 (-0.06, 0.15)

-0.04 (-0.15, 0.06)
-0.05 (-0.16, 0.07)
0.02 (-0.10, 0.14)

-0.09 (-0.21, 0.03)

0.03 (-0.17, 0.23)
-0.00 (-0.20, 0.20)

-0.12a (-0.22, -0.03)
-0.54b (-0.66, -0.42)
-0.66b (-0.76, -0.56)

0.56b (0.44, 0.68)
0.51b (0.40, 0.63)

-0.24b (-0.37, -0.12)

-0.71b (-0.76, -0.66)
0.81b (0.73, 0.89)
0.73b (0.65, 0.81)
0.22a (0.09, 0.36)
0.11 (-0.02, 0.24)

-0.36b (-0.47, -0.24)

0.10 (-0.03, 0.24)
0.18a (0.04, 0.31)

-0.12 (-0.25, 0.01)
0.07 (-0.06, 0.20)
0.12 (-0.02, 0.26)
0.02 (-0.11, 0.16)
0.17a (0.05, 0.30)

-0.21b (-0.33, -0.09)
0.03 (-0.10, 0.16)
0.06 (-0.08, 0.20)
0.02 (-0.12, 0.16)

-0.20 (-0.44, 0.03)
-0.11 (-0.35, 0.13)

ap<.01
bp<.001
cp<.05

The table reports the β coefficients and corresponding 95% confidence intervals for IEAemph and IEAairway in linear models using the indicated COPD-related measurement or health outcomes as the response 
variable. All models were adjusted for age, gender, race, pack years, smoking status.
Qperc15peel-core=100 log(perc15peel/perc15core), where the peel region is defined to be <5mm from the lung boundary and the core region is >20mm from the lung boundary.
ΔFEV1 %predicted and ΔFEV1/FVC are computed by subtracting the visit 3 value from the visit 2 value of FEV1 % of predicted or FEV1/FVC and dividing it by the number of years between the 2 visits.

COPD=chronic obstructive pulmonary disease; CI=confidence interval; FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; SGRQ=St George’s Respiratory Questionnaire; mMRC=modified 
Medical Research Council dyspnea scale; CT=computed tomography; perc15=15th percentile Hounsfield unit in inspiratory CT scan; %gas trapping=%low attenuation area using −856 Hounsfield unit threshold on 
expiratory CT scan; Pi10=the average wall thickness for a hypothetical airway of 10-mm lumen perimeter on CT; %WA segmental=the percentage of airway wall area for 3rd generation bronchi 
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To provide independent replication of our IEA 
associations, the IEA model was applied to 1527 participants 
from another subset of the COPDGene dataset that had not 
been used for model training. All the significant associations 
to clinical and longitudinal measures remained significant 
with very similar effect estimates indicating a high level of 
reproducibility for IEAs (Supplemental Tables E4, E5, and E6 
in the online supplement).

COPD Subgroups Defined by Image-Expression 
Axes and Comparison to Existing COPD Subtypes

To further understand the clinical characteristics of COPD 
subgroups defined by IEAs, we divided the IEA space 

into 4 quadrants (Figure 4) and computed the average 
characteristics of each subgroup (Supplemental Table E8 in 
the online supplement). As expected, participants with low 
IEAemph/low IEAairway values had the least obstruction (mean 
FEV1 89.2% predicted), the highest percentage of GOLD 
spirometric grade 0 participants, low emphysema, and the 
thinnest airways. Participants with high IEAemph/
low IEAairway values had characteristics consistent 
with emphysema-predominant COPD, namely high 
emphysema and low BMI, with about 70% of  GOLD 
grade 4 participants present in this group. Participants 
with low IEAemph/high IEAairway values had an airway-
predominant profile with thick airway walls, elevated 
BMI, and the greatest proportion of  PRISm participants. 
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Frequent Exacerbator-History
Frequent Exacerbator-Future

Table 3. Multivariable Associations of Image-Expression Axes to Frequent Exacerbations and 
Mortality

βIEAemph (95%CI) Odds Ratio (95%CI)
1.13 (0.90, 1.41)
0.91 (0.62, 1.34)

ap<.001

The table reports the β coefficients of the IEAemph and IEAairway and corresponding 95% confidence intervals from logistic regression models for frequent exacerbator status and a Cox proportional hazards model 
for mortality.

All models adjusted for age, gender, race, pack years, and smoking status as the covariates. 

Frequent exacerbator-history indicated if the participants had at least 2 self-reported exacerbations during the 12 months before the second visit. Frequent exacerbator-future indicated if the participants had at least 
2 self-reported exacerbations during the past 12 months before the third visit.

CI=confidence interval; IEAemph=emphysema image-expression axes; IEAairway=airway disease image-expression axes

βIEAairway (95%CI)
0.85a (0.58, 1.12)
0.92a (0.47, 1.37)

2.34a (1.79, 3.07)
2.51a (1.60, 3.94)

_______________________________________________________________________________________________________________________________________

Logistic Regression Model Odds Ratio (95%CI)
0.12 (-0.10, 0.35)

-0.09 (-0.48, 0.30)

βIEAemph (95%CI) Hazard Ratio (95%CI)βIEAairway (95%CI)Cox Proportional Hazard Model Hazard Ratio (95%CI)
Mortality 1.19 (1.00, 1.41)0.66a (0.45, 0.87) 1.93a (1.57, 2.38) 0.17 (-0.00, 0.34)

Figure 4. Visualization of Participants Projected Along Each Identified Image-Expression Axis 
Dimension

IEAemph is the emphysema axis, where higher values indicate more severe emphysema. IEAairway is the airway disease axis, where a higher value represents higher BMI and thicker airways. The space defined by 
these IEAs was used to stratify the cohort into 4 subgroups based on dividing the IEA space into 4 quadrants. Lung CT scans and clinical characteristics are shown for 1 participant in each quadrant, where the red 
mask represents the emphysema regions (<-950 HU). The characteristics of the 4 quadrants are summarized in Supplemental Table E8 in the online supplement.

BMI=body mass index; FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; IEA=image-expression axis; IEAemph=emphysema IEA; IEAairway=airway disease IEA; CT=computed tomography; 
HU=Hounsfield units

Participants with high IEAemph/high IEAairway had the 
highest SGRQ total score, highest mMRC dyspnea scores, 
and shortest 6-minute walk distance. In terms of COPD 
progression, the groups differed significantly in mortality 
risk (p<0.001) and frequent exacerbation status (2 or more 
exacerbations in 1 year) but did not change in FEV1. The 
group with the highest mortality was high IEAemph/high 
IEAairway followed by high IEAemph/low IEAairway. The latter 
group also had the highest percentage of participants with 
frequent exacerbations, both for retrospective (p<0.001, 
Chi-square test of all groups) and prospective exacerbations 
(p=0.048). 

To place IEAemph and IEAairway in the context with 
previously reported subtypes and disease axes in COPDGene, 

we compared these axes directly with the previously 
reported k-means subtypes22 and FAs.17 In Figure 5, we 
observe that the highest values of IEAemph are found in the 
severe emphysema k-means subtype, and the highest values 
of IEAairway are found in the airway-predominant k-means 
subtype, confirming our clinical interpretation of these 
disease axes. Since the FAs also showed patterns consistent 
with emphysema (FAemph) and airway-predominant disease 
(FAairway), we compared the IEAs to the FAs and observed that 
IEAemph and FAemph showed a reasonably strong correlation 
(Pearson’s r=0.58), but the IEAairway and FAairway axes showed 
only modest correlation (Pearson’s r=0.28, see Supplemental 
Table E9 in the online supplement). Examination of the 
pattern of clinical associations for IEAairway and FAairway 
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Figure 5. Distribution of the Emphysema Image-Expression Axis and Airway Disease 
Image-Expression Axis Values Grouped by Previously Published COPD K-Means Clustering 
Subtypes22

*p<0.5
**p<.01
***p<.001

P-values are obtained using the Kruskal-Wallis test. 
No symbol indicates non-significant results.

IEA=image-expression axes; IEAemph=emphysema IEA; IEAairway=airway disease IEA; RRS= relatively resistant smokers; UPE=upper zone dominant emphysema; AP=airway predominant; SE=severe emphysema

revealed that while airway axes were positively correlated 
to airway wall thickness, IEAairway is negatively correlated 
to emphysema, whereas, FAairway is positively correlated 
(Supplemental Table E10 in the online supplement). To 
determine whether the IEAs provided additional information 
about COPD phenotypes (FEV1 % pred, FEV1/FVC, SGRQ, 
mMRC, retrospective frequent exacerbations, and 6-minute 
walk distance) and COPD progression (mortality and 
prospective frequent exacerbations) above and beyond FAs, 
we constructed baseline models for each COPD phenotype 
and progression measurements with FAs included and then 
compared them to models including both FAs and IEAs. In 
most cases, the models with IEAs included outperformed 
the baseline models (p<0.001 for all COPD phenotypes and 
mortality, Supplemental Tables E11 and E12 in the online 
supplement). 

Comparison to Principal Components Based on 
Images Alone

After observing that IEAs contain additional clinically 
relevant information relative to standard features extracted 
from CT images, we sought to determine whether the 
additional information came only from applying dimension 
reduction to the CT images (CSRL features), or whether there 
was added value from our algorithm that combined the CT 
features with gene expression. To make this comparison, 

we constructed disease axes from images only by using 
PCAs to extract the top 2 principal components (PCs) of 
the CSRL features, denoted as PCA-Is. We then compared 
the predictive performance of linear models that utilize 
both IEAs and PCA-Is with the nested version that involves 
the PCA-Is only, and we observed that the models including 
IEAs were superior to models with PCA-Is only for all of 
the 6 studied COPD phenotypes as well as prospective 
exacerbations and mortality (p<0.001, Supplemental Tables 
E13 and E14 in the online supplement). These results 
suggest that by incorporating gene expression data during 
training, IEAs extract more clinically important information 
than similar methods that utilize imaging features only.

Image-Expression Axes Are Associated With 
Inflammatory Pathways 

To understand the biological aspect of the IEAs, we first 
confirmed that IEAs explained a greater proportion of gene 
expression variance than PCA-Is, as demonstrated in Figure 
6, which shows that IEAs explain a greater proportion of 
variation on a per-gene basis than PCA-Is (557 genes with 
R2>10% for IEAs versus 68 genes with R2>10% for PCA-Is). 

To identify specific biological processes associated with 
each IEA, we performed differential expression and pathway 
enrichment analysis. We identified 6494 and 3815 genes 
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Figure 6. Histograms for the Variances of Genes Explained (R2) by the Image-Expression Axes 
and Principal Component Analysis- Image Only Axes

The figure on the left shows the histogram for the 4685 selected genes. Within these genes, there are 557 genes with R2>10% for IEAs and 68 genes with R2>10% for PCA-Is. The figure on the right shows the 
histogram for all the genes (18,487 genes in total). There are 622 genes with R2>10% for IEAs and 69 genes with R2>10% for PCA-Is.

IEAs=image-expression axes; PCA-Is=principal component analysis-image only axes; RRS=relatively resistant smokers; UPE=upper zone dominant emphysema; AP=airway predominant; SE=severe emphysema

associated at an FDR of 10% with IEAemph and IEAairway, 
respectively (Supplemental Tables E15 and E16 in the online 
supplement). GO pathway enrichment identified 29 and 
13 enriched pathways (p-value<0.001) for IEAemph and 
IEAairway, respectively (Supplemental Tables E17 and E18 
in the online supplement). The most significantly associated 
pathway for IEAemph was neutrophil degranulation, whereas 
IEAairway had the strongest enrichment for RNA processing. 
The most significant pathway results are shown in Table 4.

In this paper, we used deep learning to identify novel 
connections between lung imaging features and blood gene 
expression. The deep learning model provided novel disease 
axes, i.e., IEAs, that captured elements of shared variability 
between CT scans and blood RNA-seq. We demonstrated: 
(1) that these IEAs are associated with important COPD-
related physiologic and functional measures, (2) that these 
associations contained information that is independent 
from pre-existing, standard clinical and imaging variables, 
(3) that the IEAemph axis is significantly associated with 
prospective mortality in multivariable models, and (4) that 
IEAs capture distinct patterns of connection between lung 
structural changes and blood transcriptome patterns.

Many of our main results are consistent with our 
current understanding of COPD. IEAs capture the 2 cardinal 
pathologies of COPD, emphysema, and airway disease; 
but clearer links between these aspects of lung structure 
and blood transcriptome patterns emerge from the joint 
analysis of CT images and blood RNA-seq. First, neutrophilic 
inflammation was strongly associated with emphysema but 
not the airway axis. This agrees with the prominent role 
of neutrophils in alpha-1 antitrypsin deficiency-associated 

Discussion

emphysema,23 and it provides further support for the role 
of neutrophils in the emphysema of typical COPD. The 
IEAemph axis is negatively correlated with FEV1 and it is 
positively correlated with neutrophil and monocyte counts 
with corresponding negative correlation to lymphocyte 
counts. This result is consistent with previous observations 
that FEV1 itself is positively correlated with lymphocyte 
counts, and negatively correlated with neutrophil and 
monocyte counts.24 There is evidence as well for a role for 
specific adaptive immune processes that show significant 
enrichment for both IEAemph and IEAairway, though the 
inflammatory signals that we observed in blood differ from 
the B-cell predominated signatures that have been observed 
in some lung transcriptomic studies of emphysema.25 
This discrepancy is expected, because the B-cell signature 
in the lungs may be driven by the aggregation of B-cells 
in submucosal lymphoid aggregates, which would not be 
expected to be observable in peripheral blood samples. The 
biological pathway enrichments we observed are consistent 
with previous reports of the association of emphysema 
to biomarkers related to systemic inflammation, oxidative 
stress, and elevated plasma fibrinogen levels.26 IEAairway is 
strongly correlated to BMI, which coincides with a previous 
hypothesis that obesity-related adipose tissue hypoxia and 
systemic hypoxia due to reduced pulmonary function 
contribute to the systemic inflammation of COPD.27 
Future studies, including single-cell transcriptomic data, 
could better identify the association of emphysema and 
airway disease with specific types of innate and adaptive 
inflammatory cells. 

While our IEAs seem most descriptive of emphysema and 
airway disease, they are not completely correlated to standard CT 
measurements of emphysema and airway disease, and they differ 
notably from machine-learning disease axes based on imaging 
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Table 4. Top-10 Significant Gene Ontology Enrichment Terms for Image-Expression Axes

Description Adjusted P-value

2.60e-18
4.20e-17
2.00e-14
2.20e-13
2.30e-13
2.20e-07
6.40e-07
4.40e-06
2.00e-05
3.30e-05

1.80e-08
1.00e-06
1.70e-05
7.30e-05
9.10e-05
9.20e-05
1.00e-04
1.00e-04
2.40e-04
5.20e-04

GO pathway enrichment analysis was performed using the GO biological process gene sets with p-values calculated with the Fisher exact test statistic using the weight01 algorithm in top GO21` (v2.33.1) that 
accounts for dependency in GO topology.

GO=gene ontology; IEAemph=emphysema image-expression axes; IEAairway=airway disease image-expression axes

Annotated

Neutrophil Degranulation
Viral Transcription
Nuclear-Transcribed mRNA Catabolic Process, Nonsense-Mediated decay
SRP-Dependent Cotranslational Protein Targeting to Membrane
Translational Initiation
Cytoplasmic Translation
rRNA Processing
Inflammatory Response
Immune Response
Respiratory Burst

RNA Processing
Cellular Oxidant Detoxification
Hydrogen Peroxide Catabolic Process
Cellular Iron ion Homeostasis
Retina Homeostasis
Regulation of Complement Cctivation
Antigen Processing and Presentation of Exogenous Peptide Antigen via MHC Class II
Translational Initiation
SRP-Dependent Cotranslational Protein Targeting to Membrane
Leukocyte Migration

461
174
119
99

185
98

224
529

1758
33

981
77
24
56
43
79
90

185
99

377

GO terms Significant

239
99
79
65
93
51

124
250
750
20

204
33
14
25
16
30
32
53
34
89

alone (PCA-Is) or based on imaging and spirometry (FAs).17 While 
none of these representations of emphysema and airway disease 
is demonstrably superior to the others, the IEA axes have a clear 
interpretation due to the integrative nature of the deep learning 
algorithm, whose goal was to find shared variability between 
CT images and transcriptomic patterns in the blood. The clinical 
relevance of these axes was demonstrated through regression 
models showing that IEAs were significantly associated with a 
wide range of COPD-related measures, including mortality. 
In the future, these algorithms can be extended to incorporate 
additional sources of molecular or imaging data.

While the IEAs primarily captured patterns of 
emphysema and airway-predominant COPD, they were also 
significantly correlated with core versus the periphery (peel) 
emphysema distribution. Previous work has demonstrated 
numerous clinically relevant associations to aspects of 
emphysema distribution, most notably for core/peel and 
apical/basal emphysema distribution,28-32 and a machine 
learning analysis of images alone also identified peel-
core emphysema distribution as an important dimension 
of COPD-related variability.33 Our analysis suggests that 
blood transcriptome patterns are most strongly associated 
with core/peel rather than apical/basal emphysema 
distribution and that the amount of emphysema in the core 
region is associated with the more severe disease along 
both the IEAemph and IEAairway axes. Since quantification 

of the lung peel can be influenced by technical factors 
related to lung segmentation, we conducted sensitivity 
analyses that confirmed a consistent association for the 
IEAemph axis, whereas the IEAairway association was clearly 
present only when the analysis included the outermost 
lung regions. Accordingly, we have high confidence in the 
IEAemph association to core/peel distribution, but it is not 
clear whether the IEAairway axis association reflects a true 
biological relationship or technical artifacts. 

By collecting CT scans, blood transcriptomics, and 
detailed phenotype data on thousands of current and 
former smokers enriched for COPD, the COPDGene study 
provides a novel opportunity for the application of machine 
learning to better understand the connections between the 
lung structure in COPD and molecular mechanisms of 
systemic inflammation. Like all machine learning models, 
the construction of our model required many explicit 
and implicit design choices. In our model, we extracted 
patch-level representations via self-supervised learning. 
Such methods are capable of extracting generalized and 
semantically meaningful features.34 The linear independence 
assumption in our model was intended to identify IEAs that 
captured distinct underlying disease processes and increase 
the reproducibility of our model. Unlike previous studies 
that explore the relationship between COPD imaging and 
omics by associating previously discovered image patterns 

Top-10 Significant Gene Ontology Enrichment Terms for IEAemph

GO:0043312
GO:0019083
GO:0000184
GO:0006614
GO:0006413
GO:0002181
GO:0006364
GO:0006954
GO:0006955
GO:0045730

Top-10 Significant Gene Ontology Enrichment Terms for IEAairway

GO:0006396
GO:0098869
GO:0042744
GO:0006879
GO:0001895
GO:0030449
GO:0019886
GO:0006413
GO:0006614
GO:0050900
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to omics data,22,35,36 our method potentially identifies new 
image patterns that have not been previously explored.

The main strengths of this study are: 

1.	 The joint analysis of full DICOM data from CT 
images and gene expression data via deep learning 
is novel and provides new biological and clinical 
insight into COPD. 

2.	 The sample size is large, allowing for more power 
to identify novel discoveries. 

3.	 We used a number of techniques to improve the 
reproducibility of our disease axes, including 
cross-validation, sensitivity analysis, and the use of 
constraints in our modeling procedure. 

The main limitations are: (1) our study is limited 
to blood RNA biomarkers, which capture systemic 
inflammation but no other important aspects of the COPD 
inflammatory response, such as lung gene expression and 
protein biomarkers, and (2) our analysis was limited to 
the COPDGene study. In the future, such analyses could be 
conducted in other ongoing studies collecting CT scan and 
omics data in populations enriched for COPD. 

In summary, deep learning applied to CT images, and 
transcriptomic biomarkers in COPD identified 2 main 
inflammatory processes related to CT image features that 
can be broadly defined as emphysema and airway disease. 
The emphysema-related process was most enriched for 
pathways related to neutrophilic inflammation. The airway 

axis differed from previously reported disease axes learned 
from phenotypic data alone and it was negatively correlated 
with emphysema. Finally, there was also a strong relationship 
between the core-peel distribution of emphysema and blood 
transcriptome patterns. In the future, these integrative 
machine learning methods can be refined for more fine-
grained interpretability and extended to include other 
sources of biological information.
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